Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this study, the uniform dense polydopamine (PDA) coating was deposited on hyper-cross-linked polystyrene nanospheres (HPSs) through the oxidative polymerization of dopamine with polyethyleneimine (PEI), then which underwent acidification and subsequent anion exchange with LiNTf2 to obtain HPSs@PDA electrolyte (HPSs@PDA-NTf2). So, the multi-element-doped carbon nanospheres (F,N,S-PCNs) were synthesized through the carbonization of HPSs@PDA-NTf2, demonstrating exceptional tribological performance. Compared to 500SN, the mean COF of nanolubricant (500SN + 2.0 wt.% F,N,S-PCNs) decreased from 0.181 to 0.110, and the wear volume reduced by 90.3%. The load-carrying capacity of F,N,S-PCNs as lubricant additives is increased from 150N (500SN) to 450N. The F,N,S-PCNs can infiltrate the contact area and adsorb on the friction pair surface, forming a physical adsorption film that prevents the direct contact of surface. Additionally, the active elements (F,N,S) in F,N,S-PCNs undergo tribochemical reactions with the friction pair under mechanical force and thermal effects to form a chemical protective film. This dual effect significantly enhances the boundary lubrication performance of the lubricating oil. This study presents a novel approach for synthesizing multi-element co-doped carbon nanospheres, significantly enhancing the effectiveness of oil-based lubrication technology in the field.
Cui, Y. H.; He, B. L.; Xue, S. H.; Chen, Z.; Liu, S. J.; Ye, Q.; Zhou, F.; Liu, W. M. Fabrication of MXene@Fe3O4@PNA composite with photothermal effect as water-based lubricant additive. Chem. Eng. J. 2023, 469, 143880.
Wang, K. P.; Liu, L.; Song, A. S.; Ma, T. B.; Wang, H. D.; Luo, J. B.; Liu, Y. H. Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets. Nano Res. 2022, 15, 4700–4709.
Liu, S. W.; Gao, Q. L.; Hou, K. M.; Li, Z. P.; Wang, J. Q.; Yang, S. R. Solvent-free covalent, MXene nanofluid: A new lubricant combining the characteristics of solid and liquid lubricants. Chem. Eng. J. 2023, 462, 142238.
Wang, S. Y.; Chen, D.; Hong, Q.; Gui, Y.; Cao, Y. C.; Ren, G. L.; Liang, Z. Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications—A review. J. Mol. Liq. 2023, 389, 122821.
Du, F. M.; Li, C.; Li, D. W.; Sa, X. X.; Yu, Y.; Li, C. D.; Yang, Y. X.; Wang, J. L. Research progress regarding the use of metal and metal oxide nanoparticles as lubricant additives. Lubricants 2022, 10, 196.
Fan, X. Q.; Li, X. P.; Zhao, Z.; Yue, Z. F.; Feng, P.; Ma, X. L.; Li, H.; Ye, X. Y.; Zhu, M. H. Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils. Carbon 2022, 191, 84–97.
Cui, Y. H.; Xue, S. H.; Wang, S. Y.; Chen, X.; Liu, S. J.; Ye, Q.; Zhou, F.; Liu, W. M. Fabrication of carbon dots intercalated MXene hybrids via laser treatment as oil-based additives for synergistic lubrication. Carbon 2023, 205, 373–382.
Gong, H. J.; Song, Y.; Li, G. L.; Zhang, L.; Guo, D.; Xie, G. X. An intelligent polymer composite with self-lubricating and self-healing functionalities. Compos. B Eng. 2023, 260, 110776.
Gulzar, M.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Zulkifli, N. W. M.; Mufti, R. A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 2016, 18, 223.
Liu, J. M.; Chen, B. B.; Guo, P. L.; Yu, Z. Q.; Sheng, W. C.; Zhang, K.; Liu, X. Q. Fabrication of 3D porous graphene materials for oil-based lubrication: Tribological and wear performance. Carbon 2024, 221, 118892.
Wang, S. Y.; Ren, G. L.; Li, W. Q.; Wang, B.; Wei, F. H.; Liang, Z.; Chen, D. A green modification technology of carbon nanotubes toward enhancing the tribological properties of aqueous-based lubricants. Tribol. Int. 2023, 180, 108268.
Piya, A. K.; Yang, L.; Omar, A. A. S.; Emami, N.; Morina, A. Synergistic lubrication mechanism of nanodiamonds with organic friction modifier. Carbon 2024, 218, 118742.
Liu, S.; Wang, Y. X.; Zhang, X. Z.; Liu, S. J.; Ye, Q.; Liu, W. M. Sulfur-containing carbon nanospheres as lubricant additives for antiwear and friction reduction. ACS Appl. Nano Mater. 2023, 6, 18539–18547.
Zhai, W. Z.; Srikanth, N.; Kong, L. B.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171.
Tan, S. C.; Shi, H. Y.; Du, X.; Wang, K. P.; Xu, H. J.; Wan, J. H.; Deng, K.; Zeng, Q. D.; Liu, Y. H. Electric field controlled superlubricity of fullerene-based host-guest assembly. Nano Res. 2023, 16, 583–588.
Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.
Zhang, Y. P.; Jia, X. H.; Tian, Q.; Yang, J.; Wang, S. Z.; Li, Y.; Shao, D.; Feng, L.; Song, H. J. Synthetic kilogram carbon dots for superior friction reduction and antiwear additives. Langmuir 2022, 38, 7791–7801.
Nyholm, N.; Espallargas, N. Functionalized carbon nanostructures as lubricant additives—A review. Carbon 2023, 201, 1200–1228.
Chen, X. C.; Li, J. J. Superlubricity of carbon nanostructures. Carbon 2020, 158, 1–23.
Wang, H.; Shao, Y.; Mei, S. L.; Lu, Y.; Zhang, M.; Sun, J. K.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Y. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 2020, 120, 9363–9419.
Zahid, R.; Masjuki, H. H.; Varman, M.; Mufti, R. A.; Kalam, M. A.; Gulzar, M. Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: A review. Tribol. Lett. 2015, 58, 32.
Jin, G. K.; Xue, S. H.; Zhang, R.; Liu, S.; Wang, S. Y.; Liu, S. J.; Ye, Q.; Wang, H. Q.; Zhou, F.; Liu, W. M. Pulsed laser manufactured heteroatom doped carbon dots via heterocyclic aromatic hydrocarbons for improved tribology performance. Small 2024, 20, 2311876.
Wang, F.; Wang, L. P.; Xue, Q. J. Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum. Carbon 2016, 96, 411–420.
Gong, J.; Chen, X. C.; Tang, T. Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 2019, 94, 1–32.
Yang, S. J.; Zou, L. Y.; Liu, C.; Zhong, Q.; Ma, Z. Y.; Yang, J.; Ji, J.; Müller-Buschbaum, P.; Xu, Z. K. Codeposition of levodopa and polyethyleneimine: Reaction mechanism and coating construction. ACS Appl. Mater. Interfaces 2020, 12, 54094–54103.
Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.
Poinard, B.; Kamaluddin, S.; Tan, A. Q. Q.; Neoh, K. G.; Kah, J. C. Y. Polydopamine coating enhances mucopenetration and cell uptake of nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 4777–4789.
Mou, Z. H.; Peng, J.; Yan, R. X.; Li, Y.; Zhao, B.; Wang, Z. J.; Xiao, D. Synthesis of polyelectrolyte-decorated polydopamine nanoparticles via surface reconstruction for enhancing oil-based lubrication. Chem. Eng. J. 2024, 480, 147959.
Wang, Y. X.; Zhang, T. T.; Qiu, Y. Q.; Guo, R. S.; Xu, F.; Liu, S. J.; Ye, Q.; Zhou, F. Nitrogen-doped porous carbon nanospheres derived from hyper-crosslinked polystyrene as lubricant additives for friction and wear reduction. Tribol. Int. 2022, 169, 107458.
Rezaii, E.; Mahkam, M.; Assadi, M. G.; Dolati, H. A facile synthesis of nitrogen-doped bamboo-shaped carbon nanotubes by catalytic decomposition of 2-aminopyrimidine over Fe@MgO catalyst through chemical vapor deposition method. Chem. Pap. 2021, 75, 591–598.
Chen, W. J.; Zhang, K. F.; Xu, C. H.; Zhang, F.; Du, L. Preparation of MDEA derived nitrogen-doped CQDs nanofluids and their CO2 capturing performance and mechanism investigation. Sep. Purif. Technol. 2024, 334, 126049.
Atchudan, R.; Edison, T. N. J. I.; Perumal, S.; Lee, Y. R. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl. Surf. Sci. 2017, 393, 276–286.
Li, Q. F.; Liu, S. R.; Zhang, X.; Hu, G. S.; Xia, H. A. High-efficiency sulfur-doped carbon photocatalysts synthesized by carbonization of lignosulfonate at low temperature. Mater. Today Commun. 2022, 33, 104448.
Xue, S. H.; Cui, Y. H.; Jin, G. K.; Wang, H. Y.; Liu, S. J.; Ye, Q.; Wang, H. Q.; Zhou, F.; Liu, W. M. Carbon dots with spatially-mediated-N/S-Co-doping enabling one-year stable lubricant with oil leakage detection capability. Small 2024, 20, 2312010.
Li, G. F.; Yang, F.; Wu, L. S.; Qian, L.; Hu, X. R.; Wang, Z. M.; Chen, W. Agricultural waste buckwheat husk derived bifunctional nitrogen, sulfur and oxygen-co-doped porous carbon for symmetric supercapacitors and capacitive deionization. New J. Chem. 2021, 45, 10432–10447.
Wang, Y. X.; Liu, S.; Cui, Y. H.; Bai, W.; Liu, S. J.; Ye, Q.; Zhou, F.; Liu, W. M. In-situ pyrolysis synthesis of multi-element (F, N, S) co-doped porous carbon nanospheres as lubricating additives with improved tribological behaviors. Carbon 2024, 218, 118724.
Shulga, Y. M.; Tien, T. C.; Huang, C. C.; Lo, S. C.; Muradyan, V. E.; Polyakova, N. V.; Ling, Y. C.; Loutfy, R. O.; Moravsky, A. P. XPS study of fluorinated carbon multi-walled nanotubes. J. Electron Spectrosc. Relat. Phenom. 2007, 160, 22–28.
Zeng, X. Y.; Wang, Y.; Li, R. X.; Cao, H. L.; Li, Y. F.; Lü, J. Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption. Biochar 2022, 4, 14.
Alazemi, A. A.; Etacheri, V.; Dysart, A. D.; Stacke, L. E.; Pol, V. G.; Sadeghi, F. Ultrasmooth submicrometer carbon spheres as lubricant additives for friction and wear reduction. ACS Appl. Mater. Interfaces 2015, 7, 5514–5521.
Lindberg, B. J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nordling, C.; Siegbahn, K. Molecular spectroscopy by means of esca II. Sulfur compounds. Correlation of electron binding energy with structure. Phys. Scr. 1970, 1, 286–298.
Carver, J. C.; Schweitzer, G. K.; Carlson, T. A. Use of X-ray photoelectron spectroscopy to study bonding in Cr, Mn, Fe, and Co compounds. J. Chem. Phys. 1972, 57, 973–982.
Nefedov, V. I.; Salyn, Y. V.; Sadovsky, A. P.; Beyer, L. The structure of the valence levels of iron nitrosyls from the X-ray photoelectron and X-ray spectra. J. Electron Spectrosc. Relat. Phenom. 1977, 12, 121–132.
Zhang, R. H.; Shen, M. X.; He, Z. Y. The unusual tribological behavior of diamond-like carbon films under high vacuum. Surf. Interface Anal. 2020, 52, 339–347.
Lu, Q.; Zhang, T. Y.; Wang, Y. X.; Liu, S. J.; Ye, Q.; Zhou, F. Boron-nitrogen codoped carbon nanosheets as oil-based lubricant additives for antioxidation, antiwear, and friction reduction. ACS Sustain. Chem. Eng. 2023, 11, 11867–11877.
146
Views
23
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).