AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (26.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Endogenous/exogenous dual stimulation “ROS engineering” amplification combined with autophagy-augmented for efficient ferroptosis therapy

Pengye Du1,2Pengpeng Lei1 ( )Yuan Liang1Ran An1Yi Wei1Shuyu Liu1,2Jianhao Zheng1,2Hongjie Zhang1,2,3 ( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The endogenous/exogenous dual stimulation nanoagents were designed for “reactive oxygen species (ROS) engineering” to generate large amounts of ROS, while they also deplete glutathione (GSH) to prevent ROS from being scavenged, which will cause oxidative stress, and amplified cellular autophagy disrupts physiological regulation of resistance to ROS. ROS generation, GSH depletion, and excessive autophagy cooperate with each other to induce ferroptosis.

Abstract

“Reactive oxygen species (ROS) engineering” is one of the most promising anti-tumor treatments developed in recent years. Massive explosion of ROS will cause oxidative stress, thereby inducing tumor cell death. However, ROS accumulation in tumor cells is eliminated by endogenous cellular self-regulation strategies. In this work, a kind of endogenous/exogenous dual stimulation nanoagent noted as UMZC is developed. Fenton reaction occurs between NH2-MIL-88B(Fe) contained in UMZC and the overexpression of endogenous H2O2 to generate ROS, amplified by endogenous H2S of colon tumor cells. In addition, NH2-MIL-88B(Fe) also functions to deplete glutathione (GSH) for stopping it from consuming ROS. Upconversion nanoparticles at the core of UMZC convert near-infrared into visible light, which excites zinc phthalocyanine to initiate the photochemical reaction that generates more ROS, thus alleviating the lack of tissue penetration depth for visible light. Autophagy agonist chitosan oligosaccharides induce enhancement of cellular autophagy for disrupting cellular metabolic stress and the resistance to oxidative stress of tumor cells, allowing “ROS engineering” to fully exert anti-tumor effects. All of ROS generation, GSH depletion, and induced cellular autophagy caused by nanoagents have promoting effects on the occurrence of ferroptosis. Finally, the nanoagents show the ability to effectively treat colon tumors.

Electronic Supplementary Material

Download File(s)
7017_ESM.pdf (1.7 MB)

References

[1]

Ye, M.; Xu, T.; Liu, M.; Zhu, Y. T.; Yuan, D. D.; Zhang, H.; Qin, M.; Sun, L. T. Revealing dominant oxidative species in reactive oxygen species-driven rapid chemical etching. Nano Lett. 2023, 23, 7319–7326.

[2]

Dai, Y. L.; Xu, C.; Sun, X. L.; Chen, X. Y. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017, 46, 3830–3852.

[3]

Du, J. H.; Zhou, M. T.; Chen, Q.; Tao, Y. C.; Ren, J.; Zhang, Y.; Qin, H. L. Disrupting intracellular iron homeostasis by engineered metal-organic framework for nanocatalytic tumor therapy in synergy with autophagy amplification-promoted ferroptosis. Adv. Funct. Mater. 2023, 33, 2215244.

[4]

Li, Y.; Lin, J. Y.; He, Y. Y.; Wang, K. Y.; Huang, C. L.; Zhang, R. F.; Liu, X. L. Tumour-microenvironment-responsive Na2S2O8 nanocrystals encapsulated in hollow organosilica-metal-phenolic networks for cycling persistent tumour-dynamic therapy. Exploration 2024, 4, 20230054.

[5]

Zang, P. Y.; Du, Y. Q.; Yu, C. H.; Yang, D.; Gai, S. L.; Feng, L. L.; Liu, S. K.; Yang, P. P.; Lin, J. Photothermal-actuated thermoelectric therapy by harnessing janus-structured Ag-Ag2S nanoparticles with enhanced antitumor efficacy. Chem. Mater. 2023, 35, 7770–7780.

[6]

Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.

[7]

Du, P. Y.; Wei, Y.; Liang, Y.; An, R.; Liu, S. Y.; Lei, P. P.; Zhang, H. J. Near-infrared-responsive rare earth nanoparticles for optical imaging and wireless phototherapy. Adv. Sci. 2024, 11, 2305308.

[8]

Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.

[9]

Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via fenton and fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

[10]

Wang, Z. C.; Li, H. M.; She, W. Y.; Zhang, X. Y.; Liu, Y.; Liu, Y.; Jiang, P. 3-Bromopyruvate-loaded Ti3C2 MXene/Cu2O nanosheets for photoacoustic imaging-guided and hypoxia-relieving enhanced photothermal/chemodynamic therapy. Anal. Chem. 2023, 95, 1710–1720.

[11]

Zhu, Y. L.; Wang, Z.; Zhao, R. X.; Zhou, Y. H.; Feng, L. L.; Gai, S. L.; Yang, P. P. Pt decorated Ti3C2T x MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 2022, 16, 3105–3118.

[12]

Lei, H. L.; Pei, Z. F.; Jiang, C. Y.; Cheng, L. Recent progress of metal-based nanomaterials with anti-tumor biological effects for enhanced cancer therapy. Exploration 2023, 3, 20220001.

[13]

Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

[14]

Zhou, R. B.; Xu, H.; Qu, J. L.; Ohulchanskyy, T. Y. Hemoglobin nanocrystals for drugs free, synergistic theranostics of colon tumor. Small 2023, 19, 2205165.

[15]

Zhang, Y. X.; Wen, R. R.; Hu, J. L.; Guan, D. M.; Qiu, X. C.; Zhang, Y. X.; Kohane, D. S.; Liu, Q. Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration. Nat. Commun. 2022, 13, 5927.

[16]

Li, S. Y.; Ding, H.; Chang, J. H.; Liu, S. K.; Dong, S. M.; Zyuzin, M. V.; Timin, A. S.; Feng, L. L.; He, F.; Gai, S. L. et al. Sm/Co-doped silica-based nanozymes reprogram tumor microenvironment for ATP-inhibited tumor therapy. Adv. Healthc. Mater. 2023, 12, 2300652.

[17]

Zhang, Y. J.; Zhang, L.; Wang, W. J.; Deng, Q. Q.; Liu, M. M.; Zhu, Z. T.; Liu, H.; Ren, J. S.; Qu, X. G. A DNA-gated and self-protected bioorthogonal catalyst for nanozyme-assisted safe cancer therapy. Angew. Chem., Int. Ed. 2023, 62, e202306395.

[18]

Liu, Y.; Niu, R.; Deng, R. P.; Song, S. Y.; Wang, Y. H.; Zhang, H. J. Multi-enzyme Co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism. J. Am. Chem. Soc. 2023, 145, 8965–8978.

[19]

Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

[20]

Yin, X. G.; Zhong, H. Y.; Liu, L.; Shi, J. P.; Sun, X.; Zhang, Y. X-ray-activated Bi3+/Pr3+ Co-doped LiYGeO4 phosphor with UV and NIR dual-emissive persistent luminescence. J. Rare Earths 2024, 42, 955–961.

[21]

Cui, X.; Zhang, Z.; Yang, Y. L.; Li, S. L.; Lee, C. S. Organic radical materials in biomedical applications: State of the art and perspectives. Exploration 2022, 2, 20210264.

[22]

Zhao, R. X.; Zhou, Y.; Dong, Y. S.; Dong, S. M.; Zhang, F. M.; Zhou, J. L.; He, F.; Gai, S. L.; Yang, P. P. Ball-milling fabrication of BiAgOS nanoparticles for 808 nm light mediated photodynamic/photothermal treatment. Chem. Eng. J. 2021, 411, 128568.

[23]

Liu, J. T.; Huang, J.; Zhang, L.; Lei, J. P. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 1188–1218.

[24]

Li, S. H.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X. C.; Chen, Z. M.; Bao, Y. M. et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng. 2020, 4, 704–716.

[25]

Liang, Y.; An, R.; Du, P. Y.; Lei, P. P.; Zhang, H. J. Nir-activated upconversion nanoparticles/hydrogen-bonded organic framework nanocomposites for NIR-II imaging-guided cancer therapy. Nano Today 2023, 48, 101751.

[26]

Gros, F.; Muller, S. The role of lysosomes in metabolic and autoimmune diseases. Nat. Rev. Nephrol. 2023, 19, 366–383.

[27]

Yamamoto, H.; Zhang, S. D.; Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023, 24, 382–400.

[28]

Kimmelman, A. C.; White, E. Autophagy and tumor metabolism. Cell Metab. 2017, 25, 1037–1043.

[29]

Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell 2010, 40, 280–293.

[30]

Assi, M.; Kimmelman, A. C. Impact of context-dependent autophagy states on tumor progression. Nat. Cancer 2023, 4, 596–607.

[31]

Levy, J. M. M.; Towers, C. G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542.

[32]

Mancias, J. D.; Wang, X. X.; Gygi, S. P.; Harper, J. W.; Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014, 509, 105–109.

[33]

Zhou, B. R.; Liu, J.; Kang, R.; Klionsky, D. J.; Kroemer, G.; Tang, D. L. Ferroptosis is a type of autophagy-dependent cell death. Semin. Cancer Biol. 2020, 66, 89–100.

[34]

Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J. et al. The current status of MOF and COF applications. Angew. Chem., Int. Ed. 2021, 60, 23975–24001.

[35]

Pan, Z.; Cheng, D. D.; Wei, X. J.; Li, S. J.; Guo, H.; Yang, Q. C. Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr. Polym. 2021, 258, 117596.

[36]

Hou, Z. G.; Yan, P. F.; Sun, B.; Elshekh, H.; Yan, B. An excellent soft magnetic Fe/Fe3O4-FeSiAl composite with high permeability and low core loss. Results Phys. 2019, 14, 102498.

[37]

Xu, C. H.; Bao, M. J.; Ren, J. W.; Zhang, Z. G. NH2-MIL-88B (Fe α In1– α ) mixed-MOFs designed for enhancing photocatalytic Cr(VI) reduction and tetracycline elimination. RSC Adv. 2020, 10, 39080–39086.

[38]

Feng, X. F.; Long, R. X. N.; Liu, C. C.; Liu, X. B. Visible-light-driven removal of tetracycline hydrochloride and microplastics (HDPE) by nano flower hybrid heterojunction NH2-MIL-88B(Fe)/MoS2 via enhanced electron-transfer. Sep. Purif. Technol. 2022, 302, 122138.

[39]

Zhai, X. S.; Li, Y.; Zhao, W.; Sun, W.; He, M.; Feng, J. One-pot synthesis of hexagonal NaLuF4: Yb, Er microcrystals with enhanced upconversion emission and high production yield. J. Rare Earths 2023, 41, 498–506.

[40]

Wu, L. J.; Jia, M. C.; Li, D.; Chen, G. Y. Shell engineering on thermal sensitivity of lifetime-based NIR nanothermometers for accurate temperature measurement in murine internal liver organ. Nano Lett. 2023, 23, 2862–2869.

[41]

Hu, F.; Mao, D.; Kenry; Wang, Y. X.; Wu, W. B.; Zhao, D.; Kong, D. L.; Liu, B. Metal-organic framework as a simple and general inert nanocarrier for photosensitizers to implement activatable photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707519.

[42]

Sheng, S.; Liu, F.; Lin, L.; Yan, N.; Wang, Y. B.; Xu, C. N.; Tian, H. Y.; Chen, X. S. Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. J. Control Release 2020, 328, 631–639.

[43]

Lei, L.; Cong, R.; Ni, Y. F.; Cui, X.; Wang, X. L.; Ren, H. M.; Wang, Z.; Liu, M. Y.; Tu, J. S.; Jiang, L. Dual-functional injectable hydrogel for osteoarthritis treatments. Adv. Healthc. Mater. 2024, 13, 2302551.

[44]

Zhang, N.; Fan, M. K.; Zhao, Y. C.; Hu, X. L.; Zhu, Q. J.; Jiao, X. L.; Lv, Q. B.; Li, D. B.; Huang, Z. Y.; Fu, G. S. et al. Biomimetic and NOS-responsive nanomotor deeply delivery a combination of MSC-EV and mitochondrial ROS scavenger and promote heart repair and regeneration. Adv. Sci. 2023, 10, 2301440.

[45]

Xu, J. Q.; Chu, T. J.; Yu, T. T.; Li, N. S.; Wang, C. L.; Li, C.; Zhang, Y. L.; Meng, H.; Nie, G. J. Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ROS scavenging to relieve colitis. ACS Nano 2022, 16, 13037–13048.

[46]

Byun, S.; Seok, S.; Kim, Y. C.; Zhang, Y.; Yau, P.; Iwamori, N.; Xu, H. E.; Ma, J.; Kemper, B.; Kemper, J. K. Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat. Commun. 2020, 11, 807.

[47]

Xu, C. Y.; Wang, L.; Fozouni, P.; Evjen, G.; Chandra, V.; Jiang, J.; Lu, C. C.; Nicastri, M.; Bretz, C.; Winkler, J. D. et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 2020, 22, 1170–1179

[48]

Gao, M. H.; Monian, P.; Pan, Q. H.; Zhang, W.; Xiang, J.; Jiang, X. J. Ferroptosis is an autophagic cell death process. Cell Res. 2016, 26, 1021–1032.

[49]

Yoshida, M.; Minagawa, S.; Araya, J.; Sakamoto, T.; Hara, H.; Tsubouchi, K.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T. et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat. Commun. 2019, 10, 3145.

Nano Research
Article number: 94907017
Cite this article:
Du P, Lei P, Liang Y, et al. Endogenous/exogenous dual stimulation “ROS engineering” amplification combined with autophagy-augmented for efficient ferroptosis therapy. Nano Research, 2025, 18(1): 94907017. https://doi.org/10.26599/NR.2025.94907017
Topics:

251

Views

42

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 July 2024
Revised: 29 August 2024
Accepted: 30 August 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return