AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Carbon-supported CeNCl as an efficient catalyst for CO2 cycloaddition

Li Liu1,2Lingling Zhang2Xiang Chu1,2Baokang Geng1,2Huilin Wang2Zongxiang Li3Xiao Wang1,2 ( )Shuyan Song1,2 ( )Hongjie Zhang1,2,4 ( )
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Sinocare Incorporation, Changsha 410221, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

CeNCl/C catalysed the cycloaddition reaction of styrene oxide with CO2 to produce styrene carbonate with a selectivity up to 96.7%, a yield up to 92.7%, a turnover numbers (TON) value of 349 and a stability of more than 90% of the initial activity after six cycles (216 h of catalytic testing). The presence of Lewis acid and Lewis base site in CeNCl/C enhances substrate adsorption and promotes ring-opening of the epoxides, resulting in improved performance.

Abstract

The cycloaddition reaction of CO2 with epoxide not only effectively reduces the concentration of CO2 in the atmosphere, but also has excellent industrial application value and up to 100% atom utilization, but there are difficulties in separation and recovery of traditional homogeneous catalysts, harsh reaction conditions of traditional heterogeneous catalysts, and activation of CO2 molecules. In this paper, an easily synthesized heterogeneous catalyst CeNCl/C was used to catalyze the cycloaddition reaction of CO2 with styrene oxide, with a high yield of 92.7%, a high selectivity of 96.7%, a turnover numbers (TON) value of 349, and a good stability demonstrated in six cycle tests (equivalent to 216 h of testing). Through comprehensive studies, it was shown that CeNCl/C contains Lewis acid-base centers as active centers, which can effectively reduce the energy barrier required for ring opening of the reaction substrate, enhance the adsorption and activation of CO2, and promote the formation of intermediates, which led to the acquisition of excellent catalytic activity.

Electronic Supplementary Material

Download File(s)
7028_ESM.pdf (1.8 MB)

References

[1]

Wu, P. Y.; Li, Y.; Zheng, J. J.; Hosono, N.; Otake, K. I.; Wang, J.; Liu, Y. H.; Xia, L. L.; Jiang, M.; Sakaki, S. et al. Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nat. Commun. 2019, 10, 4362.

[2]

Gao, W. Y.; Chen, Y.; Niu, Y. H.; Williams, K.; Cash, L.; Perez, P. J.; Wojtas, L.; Cai, J. F.; Chen, Y. S.; Ma, S. Q. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem., Int. Ed. 2014, 53, 2615–2619.

[3]

Zhu, J. J.; Diao, T. T.; Wang, W. Y.; Xu, X. L.; Sun, X. Y.; Carabineiro, S. A. C.; Zhao, Z. Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Appl. Catal. B: Environ. 2017, 219, 92–100.

[4]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[5]

Shaikh, R. R.; Pornpraprom, S.; D’Elia, V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal. 2018, 8, 419–450.

[6]

Zhou, Z.; He, C.; Xiu, J.; Yang, L.; Duan, C. Y. Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 2015, 137, 15066–15069.

[7]

Li, P. Z.; Wang, X. J.; Liu, J.; Lim, J. S.; Zou, R. Q.; Zhao, Y. L. A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J. Am. Chem. Soc. 2016, 138, 2142–2145.

[8]

Wang, T.; Zhu, Y. Q.; Wang, W.; Niu, J. F.; Lu, Z. Y.; He, P. L. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. 2024, 17, 5975–5984.

[9]

Claver, C.; Yeamin, M. B.; Reguero, M.; Masdeu-Bultó, A. M. Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates. Green Chem. 2020, 22, 7665–7706.

[10]

Pal, T. K.; De, D.; Bharadwaj, P. K. Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord. Chem. Rev. 2020, 408, 213173.

[11]

Yan, T.; Liu, H.; Zeng, Z. X.; Pan, W. G. Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 2023, 68, 102355.

[12]

Saptal, V. B.; Bhanage, B. M. Current advances in heterogeneous catalysts for the synthesis of cyclic carbonates from carbon dioxide. Curr. Opin. Green Sustain. Chem. 2017, 3, 1–10.

[13]

Zhang, Y. Y.; Yang, G. W.; Xie, R.; Yang, L.; Li, B.; Wu, G. P. Scalable, durable, and recyclable metal-free catalysts for highly efficient conversion of CO2 to cyclic carbonates. Angew. Chem., Int. Ed. 2020, 59, 23291–23298.

[14]

Xu, B. H.; Wang, J. Q.; Sun, J.; Huang, Y.; Zhang, J. P.; Zhang, X. P.; Zhang, S. J. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: A multi-scale approach. Green Chem. 2015, 17, 108–122.

[15]

Decortes, A.; Castilla, A. M.; Kleij, A. W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem., Int. Ed. 2010, 49, 9822–9837.

[16]

Luo, R. C.; Liu, X. Y.; Chen, M.; Liu, B. Y.; Fang, Y. X. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates. ChemSusChem 2020, 13, 3945–3966.

[17]

Liu, F. W.; Duan, X. R.; Dai, X.; Du, S. S.; Ma, J. J.; Liu, F. S.; Liu, M. S. Metal-decorated porous organic frameworks with cross-linked pyridyl and triazinyl as efficient platforms for CO2 activation and conversion under mild conditions. Chem. Eng. J. 2022, 445, 136687.

[18]

Liu, L. N.; Jayakumar, S.; Chen, J.; Tao, L.; Li, H.; Yang, Q. H.; Li, C. Synthesis of bifunctional porphyrin polymers for catalytic conversion of dilute CO2 to cyclic carbonates. ACS Appl. Mater. Interfaces 2021, 13, 29522–29531.

[19]

Qaroush, A. K.; Alsoubani, F. A.; Al-Khateeb, A. A. M.; Nabih, E.; Al-Ramahi, E.; Khanfar, M. F.; Assaf, K. I.; Eftaiha, A. A. F. An efficient atom-economical chemoselective CO2 cycloaddition using lanthanum oxide/tetrabutyl ammonium bromide. Sustain. Energy Fuels 2018, 2, 1342–1349.

[20]

Hao, L. D.; Xia, Q. N.; Zhang, Q.; Masa, J.; Sun, Z. Y. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chin. J. Catal. 2021, 42, 1903–1920.

[21]

Guillerm, V.; Weseliński, Ł. J.; Belmabkhout, Y.; Cairns, A. J.; D’Elia, V.; Wojtas, Ł.; Adil, K.; Eddaoudi, M. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat. Chem. 2014, 6, 673–680.

[22]

Yang, D. R.; Wang, X. 2D π-conjugated metal-organic frameworks for CO2 electroreduction. SmartMat. 2022, 3, 54–67.

[23]

Bobbink, F. D.; Vasilyev, D.; Hulla, M.; Chamam, S.; Menoud, F.; Laurenczy, G.; Katsyuba, S.; Dyson, P. J. Intricacies of cation-anion combinations in imidazolium salt-catalyzed cycloaddition of CO2 into epoxides. ACS Catal. 2018, 8, 2589–2594.

[24]

Kuang, H. Y.; Lin, Y. X.; Li, X. H.; Chen, J. S. Chemical fixation of CO2 on nanocarbons and hybrids. J. Mater. Chem. A 2021, 9, 20857–20873.

[25]

Xie, Y.; Wang, T. T.; Liu, X. H.; Zou, K.; Deng, W. Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 2013, 4, 1960.

[26]

Cui, X. J.; Dai, X. C.; Surkus, A. E.; Junge, K.; Kreyenschulte, C.; Agostini, G.; Rockstroh, N.; Beller, M. Zinc single atoms on N-doped carbon: An efficient and stable catalyst for CO2 fixation and conversion. Chin. J. Catal. 2019, 40, 1679–1685.

[27]

Zhang, S.; Xia, Z. M.; Zou, Y.; Cao, F. X.; Liu, Y. X.; Ma, Y. Y.; Qu, Y. Q. Interfacial frustrated Lewis pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates. J. Am. Chem. Soc. 2019, 141, 11353–11357.

[28]

Xie, Z. H.; Hwang, S.; Chen, J. G. Reduction-induced metal/oxide interfacial sites for selective CO2 hydrogenation. SmartMat. 2023, 4, e1201.

[29]

Adeleye, A. I.; Patel, D.; Niyogi, D.; Saha, B. Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide. Ind. Eng. Chem. Res. 2014, 53, 18647–18657.

[30]

Gao, J.; Yue, C. G.; Wang, H.; Li, J. X.; Yao, H.; Wang, M. Y.; Ma, X. B. CeO2-ZrO2 solid solution catalyzed and moderate acidic-basic sites dominated cycloaddition of CO2 with epoxides: Halogen-free synthesis of cyclic carbonates. Catalysts 2022, 12, 632.

[31]

Liu, L.; Wang, F.; Chu, X.; Zhang, L. L.; Zhang, S. S.; Wang, X.; Che, G. B.; Song, S. Y.; Zhang, H. J. CeNCl-CeO2 heterojunction-modified Ni catalysts for efficient electroreduction of CO2 to CO. Adv. Energy Mater. 2024, 14, 2301575.

[32]

Zhao, M.; Wang, X.; Xu, J.; Li, Y. O.; Wang, X. M.; Chu, X.; Wang, K.; Wang, Z. J.; Zhang, L. L.; Feng, J. et al. Strengthening the metal-acid interactions by using CeO2 as regulators of precisely placing Pt species in ZSM-5 for furfural hydrogenation. Adv. Mater. 2024, 36, 2313596.

[33]

Wu, X. T.; Wang, X.; Zhang, L. L.; Wang, X. M.; Song, S. Y.; Zhang, H. J. Polyethylene upgrading to liquid fuels boosted by atomic Ce promoters. Angew. Chem., Int. Ed. 2024, 63, e202317594.

[34]

Wang, S. G.; Qin, J. W.; Zheng, L. R.; Guo, D. L.; Cao, M. H. A self-sacrificing dual-template strategy to heteroatom-enriched porous carbon nanosheets with high pyridinic-N and pyrrolic-N content for oxygen reduction reaction and sodium storage. Adv. Mater. Interfaces 2018, 5, 1801149.

[35]

Li, B. B.; Ju, Z. F.; Zhou, M.; Su, K. Z.; Yuan, D. Q. A reusable MOF-supported single-site zinc(II) catalyst for efficient intramolecular hydroamination of o-alkynylanilines. Angew. Chem., Int. Ed. 2019, 58, 7687–7691.

[36]

Zhu, Z. Z.; Li, Z.; Wei, X. X.; Wang, J. J.; Xiao, S. H.; Li, R.; Wu, R.; Chen, J. S. Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes. Carbon 2021, 185, 9–16.

[37]

Rehman, A.; Eze, V. C.; Resul, M. F. M. G.; Harvey, A. Kinetics and mechanistic investigation of epoxide/CO2 cycloaddition by a synergistic catalytic effect of pyrrolidinopyridinium iodide and zinc halides. J. Energy Chem. 2019, 37, 35–42.

[38]

Dinker, M. K.; Li, M. M.; Zhao, K.; Zuo, M. R.; Ding, L. F.; Liu, X. Q.; Sun, L. B. Transformation of type III to type II porous liquids by tuning surface rigidity of rhodium(II)-based metal-organic polyhedra for CO2 cycloaddition. Angew. Chem., Int. Ed. 2023, 62, e202306495.

[39]

Aguila, B.; Sun, Q.; Wang, X. L.; O’Rourke, E.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Lower activation energy for catalytic reactions through host–guest cooperation within metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 10107–10111.

[40]

Gupta, N. N.; Punekar, A. S.; Raj, K. R. E. K.; Ghodekar, M. M.; Patil, V. S.; Gopinath, C. S.; Raja, T. Phase transfer ceria-supported nanocatalyst for nitrile hydration reaction. ACS Omega 2019, 4, 16037–16044.

[41]

Wang, T.; Chen, W. C.; Liu, Q. D.; Wang, W.; Wang, Y. M.; Wu, B.; Shi, W. X.; Zhu, Y. Q.; He, P. L.; Wang, X. Self-assembly of polyoxometalate-based sub-1 nm polyhedral building blocks into rhombic dodecahedral superstructures. Angew. Chem., Int. Ed. 2023, 62, e202314045.

[42]

Ha, Y.; Fei, B.; Yan, X. X.; Xu, H. B.; Chen, Z. L.; Shi, L. X.; Fu, M. S.; Xu, W.; Wu, R. B. Atomically dispersed co-pyridinic N-C for superior oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 2002592.

[43]

Li, Y. H.; Cai, X. H.; Chen, S. J.; Zhang, H.; Zhang, K. H. L.; Hong, J. Q.; Chen, B. H.; Kuo, D. H.; Wang, W. J. Highly dispersed metal carbide on ZIF-derived pyridinic-N-doped carbon for CO2 enrichment and selective hydrogenation. ChemSusChem 2018, 11, 1040–1047.

[44]

Liu, Y. X.; Wang, H. H.; Zhao, T. J.; Zhang, B.; Su, H.; Xue, Z. H.; Li, X. H.; Chen, J. S. Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: In-built Lewis acid-base pairs for highly efficient CO2 fixation. J. Am. Chem. Soc. 2019, 141, 38–41.

[45]

Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.

[46]

Chen, Y. M.; Chen, L. Y.; Li, Y. W.; Shen, K. Metal-organic frameworks as a new platform to construct ordered mesoporous Ce-based oxides for efficient CO2 fixation under ambient conditions. Small 2023, 19, 2303235.

Nano Research
Article number: 94907028
Cite this article:
Liu L, Zhang L, Chu X, et al. Carbon-supported CeNCl as an efficient catalyst for CO2 cycloaddition. Nano Research, 2025, 18(1): 94907028. https://doi.org/10.26599/NR.2025.94907028
Topics:

293

Views

62

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 July 2024
Revised: 01 September 2024
Accepted: 10 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return