PDF (24.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

2D S-doped g-C3N4 and V2CTx nanocomposites for ultra-sensitive electrochemical sensing uric acid

Yilin Li1Jipeng Fan1Jiahe Peng1()Yujie Zheng3Weiping Gong2Jizhou Jiang1 ()
School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
Show Author Information

Graphical Abstract

View original image Download original image
A straightforward electrochemical sensor, consisting of S-doped g-C3N4 (SCN) and V2CTx MXene (SCN/V2C), has been prepared via ball milling followed by calcination. The SCN/V2C nanocomposite shows great electrochemical performance for uric acid (UA) detection.

Abstract

Accurate and sensitive detection of uric acid (UA) is crucial, as abnormal UA levels are often indicative of various diseases. This work introduces a straightforward electrochemical sensor utilizing a two-dimensional (2D) nanocomposite of S-doped g-C3N4 (SCN) and V2CTx MXene (SCN/V2C), which was prepared via ball milling followed by calcination. The SCN/V2C nanocomposite demonstrates superior conductivity and a reduced band gap relative to pure g-C3N4, leading to improved electrochemical performance for UA detection. Differential pulse voltammetry (DPV) measurements revealed a limit of detection (LOD) of 1 μM for UA and a linear response range spanning from 3 μM to 1 mM. Furthermore, experimental results confirmed the excellent stability of the SCN/V2C nanocomposite. Density functional theory (DFT) calculations revealed that SCN/V2C acts as a powerful electron donor, while UA functions as an efficient electron acceptor. The electron transfer between SCN/V2C and UA is significantly greater than that with other common interfering biological molecules, leading to the highest adsorption energy of UA on the SCN/V2C surface. This strong interaction accounts for the sensor’s exceptional selectivity. This newly developed sensor provides a straightforward and highly sensitive approach for the electrochemical detection of trace levels of UA in real biological samples.

References

[1]

Arroquia, A.; Acosta, I.; Armada, M. P. G. Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Mater. Sci. Eng.: C 2020, 109, 110602.

[2]

Wang, H.; Wang, H. T.; Yang, J. J.; Maulida, P. Y. D.; Zou, J.; Arramel, Wu, C.; Jiang, J. Z. Black phosphorus nanosheets-based effective electrochemical sensor for uric acid detection. Carbon Lett. 2023, 33, 2161–2169.

[3]

Tukimin, N.; Abdullah, J.; Sulaiman, Y. Review-electrochemical detection of uric acid, dopamine and ascorbic acid. J. Electrochem. Soc. 2018, 165, B258–B267.

[4]

Wang, K. D.; Wu, C.; Wang, F.; Liao, M. H.; Jiang, G. Q. Bimetallic nanoparticles decorated hollow nanoporous carbon framework as nanozyme biosensor for highly sensitive electrochemical sensing of uric acid. Biosens. Bioelectron. 2020, 150, 111869.

[5]

Besbes, F.; Hsine, Z.; Mlika, R. Synthesis of heteroatoms doped reduced graphene oxide for the electrochemical determination of uric acid in commercial milk. Carbon Lett. 2023, 33, 2109–2128.

[6]

Kwon, W.; Kim, J. Y.; Suh, S.; In, M. K. Simultaneous determination of creatinine and uric acid in urine by liquid chromatography-tandem mass spectrometry with polarity switching electrospray ionization. Forensic Sci. Int. 2012, 221, 57–64.

[7]

Dobay, R.; G. Harsányi, Visy, C. Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique. Anal. Chim. Acta 1999, 385, 187–194.

[8]

Chen, Y. H.; Liu, A. R.; Wang, Y.; Li, P.; Zhuang, Y. R.; Sun, S. H.; Wang, D. Z.; Wei, W. A dual-mode strategy for diacetyl detection based on colorimetry and surface-enhanced Raman scattering. Sens. Actuators B: Chem. 2024, 405, 135336.

[9]

Bhargava, A. K.; Lal, H.; Pundir, C. S. Discrete analysis of serum uric acid with immobilized uricase and peroxidase. J. Biochem. Biophys. Methods 1999, 39, 125–136.

[10]

Fan, J.; Guo, H. Q.; Liu, G. G.; Peng, P. A. Simple and sensitive fluorimetric method for determination of environmental hormone bisphenol A based on its inhibitory effect on the redox reaction between peroxyl radical and rhodamine 6G. Anal. Chim. Acta 2007, 585, 134–138.

[11]

Rocha, D. L.; Rocha, F. R. P. A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchem. J. 2010, 94, 53–59.

[12]

Liu, Y. Q.; Lv, J. C.; Yang, L.; Cui, Y. Electrochemical uric acid sensors: Fundamentals and commercial status. J. Electrochem. Soc. 2022, 169, 127520.

[13]

Govindhan, M.; Adhikari, B. R.; Chen, A. C. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv. 2014, 4, 63741–63760.

[14]

Venkatesh, K.; Muthukutty, B.; Chen, S. M.; Karuppasamy, P.; Haidyrah, A. S.; Karuppiah, C.; Yang, C. C.; Ramaraj, S. K. Spinel CoMn2O4 nano-/micro-spheres embedded RGO nanosheets modified disposable electrode for the highly sensitive electrochemical detection of metol. J. Ind. Eng. Chem. 2022, 106, 287–296.

[15]

de Almeida Ferraz, N. V.; Vasconcelos, W. S.; Silva, C. S.; Junior, S. A.; Amorim, C. G.; M. da Conceição Branco S. M. Montenegro, M.; da Cunha Areia, M. C. Gold-copper metal-organic framework nanocomposite as a glassy carbon electrode modifier for the voltammetric detection of glutathione in commercial dietary supplements. Sens. Actuators B: Chem. 2020, 307, 127636.

[16]

Annalakshmi, M.; Kumaravel, S.; Chen, S. M.; Balasubramanian, P.; Balamurugan, T. S. T. A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sens. Actuators B: Chem. 2020, 305, 127387.

[17]

Fu, P.; Xing, S.; Xu, M. J.; Zhao, Y.; Zhao, C. Peptide nucleic acid-based electrochemical biosensor for simultaneous detection of multiple microRNAs from cancer cells with catalytic hairpin assembly amplification. Sens. Actuators B: Chem. 2020, 305, 127545.

[18]

Drummond, T. G.; Hill, M. G.; Barton, J. K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199.

[19]

Zou, Y. J.; Gu, H. F.; Yang, J. J.; Zeng, T.; Yang, J.; Zhang, Y. Y. A high sensitivity strategy of nitrite detection based on CoFe@NC nanocubes modified glassy carbon electrode. Carbon Lett. 2023, 33, 2075–2086.

[20]

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

[21]

Lu, Q. J.; Deng, J. H.; Hou, Y. X.; Wang, H. Y.; Li, H. T.; Zhang, Y. Y. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem. Commun. 2015, 51, 12251–12253.

[22]

Jiang, J. Z.; Ouyang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.

[23]

Qin, X.; Wan, J. B.; ·Zhang, Q.; Zhang, Y. J.; Yu, H. Z.; Shi, S. W. Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors. Carbon Lett. 2023, 33, 781–790.

[24]

Ng, S. F.; Chen, X. Z.; Foo, J. J.; Xiong, M.; Ong, W. J. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction. Chin. J. Catal. 2023, 47, 150–160.

[25]

Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

[26]

Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019.

[27]

Huang, Z. F.; Song, J. J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. J.; Mi, W. B.; Zhang, X. W.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646–656.

[28]

Wang, D. D.; Lin, Z. X.; Miao, C.; Jiang, W.; Li, H. J.; Liu, C. B.; Che, G. B. An S-scheme photocatalyst constructed by modifying Ni-doped Sn3O4 micro-flowers on g-C3N4 nanosheets for enhanced visible-light-driven hydrogen evolution. J. Ind. Eng. Chem. 2022, 113, 380–388.

[29]

Xia, X.; Xie, C.; Xu, B. G.; Ji, X. S.; Gao, G. G.; Yang, P. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 2022, 105, 303–312.

[30]

Ma, G. X.; Ning, G. Q.; Wei, Q. S-doped carbon materials: Synthesis, properties and applications. Carbon 2022, 195, 328–340.

[31]

Sun, Y. Z.; Ning, G. Q.; Qi, C. L.; Li, J. C.; Ma, X. L.; Xu, C. G.; Li, Y. F.; Zhang, X.; Gao, J. S. An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode. Electrochim. Acta 2016, 190, 141–149.

[32]

Ma, X. L.; Ning, G. Q.; Sun, Y. Z.; Pu, Y. J.; Gao, J. S. High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 2014, 79, 310–320.

[33]

Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B: Environ. 2018, 224, 983–999.

[34]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

[35]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[36]

Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

[37]

Wang, L. N.; He, G.; Wang, W. H.; Xu, X. F.; Jiang, S. S.; Fortunato, E.; Martins, R. Energy-band engineering by 2D MXene doping for high-performance homojunction transistors and logic circuits. J. Mater. Sci. Technol. 2023, 159, 41–51.

[38]

Dall’Agnese, Y.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 2015, 6, 2305–2309.

[39]

Tan, Q. Y.; Zhuang, W.; Attia, M.; Djugum, R.; Zhang, M. X. Recent progress in additive manufacturing of bulk MAX phase components: A review. J. Mater. Sci. Technol. 2022, 131, 30–47.

[40]

Yang, J. C.; Gui, Y. G.; Wang, Y. F.; He, S. S. NiO/Ti3C2T x MXene nanocomposites sensor for ammonia gas detection at room temperature. J. Ind. Eng. Chem. 2023, 119, 476–484.

[41]

Li, C.; Song, C. J.; Li, H.; Ye, L. Q.; Xu, Y. X.; Huang, Y. P.; Nie, G. Z.; Zhang, R. M.; Liu, W.; Huang, N. et al. Ultradurable fluorinated V2AlC for peroxymonosulfate activation in organic pollutant degradation processes. Chin. J. Catal. 2022, 43, 1927–1936.

[42]

Ganesh, P. S.; Kim, S. Y. Electrochemical sensing interfaces based on novel 2D-MXenes for monitoring environmental hazardous toxic compounds: A concise review. J. Ind. Eng. Chem. 2022, 109, 52–67.

[43]

Zhou, Z. Y.; Pourhashem, S.; Wang, Z. Q.; Sun, J. W.; Ji, X. H.; Zhai, X. F.; Duan, J. Z.; Hou, B. R. Mxene structure: A key parameter in corrosion barrier performance of organic coatings. J. Ind. Eng. Chem. 2022, 116, 310–320.

[44]

Luo, G. C.; Zhang, Z. L.; Wang, Y. B.; Deng, Q.; Pan, S. T.; Wang, T. F.; Li, Q. H.; Liu, K. X.; Kong, P. F.; Zhang, J. et al. A self-powered ultraviolet photodetector with van der Waals schottky junction based on TiO2 nanorod arrays/Au-modulated V2CT x MXene. J. Mater. Sci. Technol. 2023, 156, 83–91.

[45]

He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.

[46]

Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B: Environ. 2019, 258, 117956.

[47]

Tang, Q. J.; Sun, Z. X.; Deng, S.; Wang, H. Q.; Wu, Z. B. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J. Colloid Interface Sci. 2020, 564, 406–417.

[48]

Li, J. M.; Zhao, L.; Wang, S. M.; Li, J.; Wang, G. H.; Wang, J. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 515, 145922.

[49]

Pandian, K.; Kalayarasi, J.; Gopinath, S. C. B. Metal-free sulfur-doped graphitic carbon nitride-modified GCE-based electrocatalyst for the enhanced electrochemical determination of Omeprazole in Drug formulations and Biological Samples. Biotechnol. Appl. Biochem. 2022, 69, 2766–2779.

[50]

Wang, H. T.; Yu, L. L.; Peng, J. H.; Zou, J.; Gong, W. P.; Jiang, J. Z. Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution. Nano Res. 2024, 17, 8007–8016.

[51]

Wang, H. T.; Yu, L. L.; Peng, J. H.; Zou, J.; Jiang, J. Z. Strategically designing and fabricating nitrogen and sulfur Co-doped g-C3N4 for accelerating photocatalytic H2 evolution. J. Mater. Sci. Technol. 2025, 208, 111–119.

[52]

Zhang, T. R.; Jiang, X.; Li, G. C.; Yao, Q. F.; Lee, J. Y. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2T x (MXene) nanodot composite. ChemNanoMat 2018, 4, 56–60.

[53]

Zhu, K. X.; Lv, Y.; Liu, J.; Wang, W. J.; Wang, C. P.; Li, S. M.; Wang, P.; Zhang, M.; Meng, A. L.; Li, Z. J. Facile fabrication of g-C3N4/SnO2 composites and ball milling treatment for enhanced photocatalytic performance. J. Alloys Compd. 2019, 802, 13–18.

[54]
Frisch, M. J.; Trucks, G.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision C. 01; Gaussian Inc.: Wallingford, CT, USA, 2010.
[55]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[56]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.

[57]

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

[58]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[59]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[60]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[61]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[62]

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

[63]

Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658.

[64]

Xu, J.; Hu, X. H.; Wang, X. H.; Wang, X.; Ju, Y. F.; Ge, S. H.; Lu, X. L.; Ding, J. N.; Yuan, N. Y.; Gogotsi, Y. Low-temperature pseudocapacitive energy storage in Ti3C2T x MXene. Energy Storage Mater. 2020, 33, 382–389.

[65]

Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

[66]

Chu, T. S.; Wang, G. Y.; Zhang, X. Y.; Jia, Y. Y.; Dai, S.; Liu, X. Z.; Zhang, L.; Yang, X.; Zhang, B. W.; Xuan, F. Z. High-density dual-structure single-atom Pt electrocatalyst for efficient hydrogen evolution and multimodal sensing. Nano Lett. 2024, 24, 9666–9674.

[67]

Wang, Z. G.; Yu, K.; Feng, Y.; Qi, R. J.; Ren, J.; Zhu, Z. Q. VO2(p)-V2C(MXene) grid structure as a Lithium polysulfide catalytic host for high-performance Li–S battery. ACS Appl. Mater. Interfaces 2019, 11, 44282–44292.

[68]

Rong, C.; Su, T.; Li, Z. K.; Chu, T. S.; Zhu, M. L.; Yan, Y. B.; Zhang, B. W.; Xuan, F. Z. Elastic properties and tensile strength of 2D Ti3C2T x MXene monolayers. Nat. Commun. 2024, 15, 1566.

[69]

Zhao, P.; Zhao, W. L.; Zhang, K.; Lin, H.; Zhang, X. D. Polymeric injectable fillers for cosmetology: Current status, future trends, and regulatory perspectives. J. Appl. Polym. Sci. 2020, 137, 48515.

[70]

Xia, P. F.; Cheng, B.; Jiang, J. Z.; Tang, H. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 2019, 487, 335–342.

[71]

Bai, J. B.; Zhang, Y. N.; Chen, H.; Yang, L. X.; Bai, L. J.; Wei, D. L.; Cao, X. X.; Liang, Y.; Yang, H. W. V2CT x MXene: A promising catalyst for low-temperature aerobic oxidative desulfurization. Catal. Lett. 2023, 153, 3103–3110.

[72]

Feng, W.; Han, X. G.; Hu, H.; Chang, M. Q.; Ding, L.; Xiang, H. J.; Chen, Y.; Li, Y. H. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021, 12, 2203.

[73]

Ren, E. H.; Cui, C.; Zhai, J. Y.; Li, A.; Tang, H.; Peng, B. Y.; Guo, R. H.; Xiao, H. Y.; Zhou, M.; Zhang, J. W. Facile synthesis of V2CT x @RGO composite aerogel via hydrothermal reaction and its dye adsorption performance. J. Mater. Sci.: Mater. Electron. 2023, 34, 343.

[74]

Hu, C. Y.; E, L.; Hu, K. K.; Lai, L. Y.; Zhao, D.; Zhao, W.; Rong, H. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity. J. Mater. Sci. 2020, 55, 151–162.

[75]

Luo, X.; Dong, Y. Q.; Wang, D. Y.; Duan, Y. J.; Lei, K.; Mao, L. J.; Li, Y.; Zhao, Q.; Sun, Y. Facile synthesis of g-C3N4 nanosheets for effective degradation of organic pollutants via ball milling. Rev. Adv. Mater. Sci. 2023, 62, 20230123.

[76]

Jin, T.; Liu, C. B.; Chen, F.; Qian, J. C.; Qiu, Y. B.; Meng, X. R.; Chen, Z. G. Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for rhodamine B. Carbon Lett. 2022, 32, 1451–1462.

[77]

Shi, M. J.; Li, Y.; Wang, W. Q.; Han, R.; Luo, X. L. A super-antifouling electrochemical biosensor for protein detection in complex biofluids based on PEGylated multifunctional peptide. ACS Sens. 2024, 9, 2956–2963.

[78]

Ma, L.; Zhang, Q. R.; Wu, C.; Zhang, Y.; Zeng, L. T. PtNi bimetallic nanoparticles loaded MoS2 nanosheets: Preparation and electrochemical sensing application for the detection of dopamine and uric acid. Anal. Chim. Acta 2019, 1055, 17–25.

[79]

Katz, E.; Willner, I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme Biosensors. Electroanalysis 2003, 15, 913–947.

[80]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[81]

Manikandan, R.; Kim, J.; Ishigami, A.; Cho, J. Y.; Kim, J. H.; Han, J. T.; Lee, J.; Chang, S. C. Dispersant-free supra single-walled carbon nanotubes for simultaneous and highly sensitive biomolecule sensing in ex vivo mouse tissues. Carbon 2023, 213, 118275.

[82]

Chen, F.; Wang, J. H.; Chen, L. J.; Lin, H. L.; Han, D. X.; Bao, Y.; Wang, W.; Niu, L. A wearable electrochemical biosensor utilizing functionalized Ti3C2T x MXene for the real-time monitoring of uric acid metabolite. Anal. Chem. 2024, 96, 3914–3924.

[83]

Ambika, A. V.; Navya, N.; Kumar, S. R. K.; Suresha, B. L. Electrochemical determination of paracetamol by SWCNT-modified carbon paste electrode: A cyclic voltammetric study. Carbon Lett. 2022, 32, 1287–1295.

[84]

Amalraj, A. J. J.; Wang, S. F. Synthesis of transition metal titanium oxide (MTiO x , M = Mn, Fe, Cu) and its application in furazolidone electrochemical sensor. J. Ind. Eng. Chem. 2022, 111, 356–368.

[85]

Guan, Y. C.; Ren, Z. X.; Lang, Y.; Liu, T. Z.; Gong, Z.; Lv, Y. G. Preparation and photocatalytic degradation of sulfamethoxazole by g-C3N4 nano composite samples. Rev. Adv. Mater. Sci. 2023, 62, 20220280.

[86]

Guan, D. C.; Huang, Y.; He, M. M.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Du, K. Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries. Ionics 2021, 27, 4127–4134.

[87]

Gong, Y. T.; Gu, M. M.; Yan, M. H.; Wang, G. L. Intercalated doxorubicin acting as stimulator of PbS photocathode for probing DNA-protein interactions. Microchim. Acta 2021, 188, 426.

[88]

Gu, Y.; Wang, X. L.; Humayun, M.; Li, L. F.; Sun, H. C.; Xu, X. F.; Xue, X. Y.; Habibi-Yangjeh, A.; Temst, K.; Wang, C. D. Spin regulation on (Co, Ni)Se2/C@FeOOH hollow nanocage accelerates water oxidation. Chin. J. Catal. 2022, 43, 839–850.

[89]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[90]

Xu, F. G.; Wang, L. W.; Wu, M. J.; Ma, G. R. Vertical growth of leaf-like Co-metal organic framework on carbon fiber cloth as integrated electrode for sensitive detection of dopamine and uric acid. Sens. Actuators B: Chem. 2023, 386, 133734.

[91]

Feng, C. X.; Zhang, J. W.; Bian, C.; Li, L. Y.; Hu, R.; Chang, H. X.; Peng, F.; Peng, X. F.; Zhong, N. B. Solid-liquid-core optical fiber biosensor for highly sensitive and selective detection of 4-chlorophenol in water. Chin. Chem. Lett. 2023, 34, 108457.

[92]

He, X. M.; Bai, S. S.; Jiang, J. Z.; Ong, W. J.; Peng, J. H.; Xiong, Z. G.; Liao, G. D.; Zou, J.; Li, N. Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chem. Eng. J. Adv. 2021, 8, 100175.

[93]

Qin, Z. H.; Tang, B.; Zhang, G. R.; Zhu, C. Q.; Jiang, K.; Zhang, B. W.; Xuan, F. Z. Single-atom Ni–N4 for enhanced electrochemical sensing. Nano Res. 2024, 17, 7658–7664.

[94]

Ardakani, Y. S.; Moradi, M. DFT/TDDFT study on electronic, optical and structural properties of MAPbI3/RbSnI2Cl and MAPbI2Cl/RbXI3 (X = Pb, Sn) heterostructures. J. Cent. South Univ. 2023, 30, 1447–1460.

[95]

Xiao, J. X.; Zhu, S. M.; Bu, L. J.; Zhou, S. Q. Molecularly imprinted heterostructure-based electrochemosensor for ultratrace and precise detection of 2-methylisoborneol in water. ACS Sens. 2024, 9, 524–532.

[96]

Wang, L. Y.; Song, Y. H.; Luo, Y.; Wang, L. A novel covalent organic framework with multiple adsorption sites for removal of Hg2+ and sensitive detection of nitrofural. J. Ind. Eng. Chem. 2022, 106, 374–381.

[97]

Hu, Y.; Hu, A. J.; Wang, J. W.; Niu, X. B.; Zhou, M. J.; Chen, W.; Lei, T. Y.; Huang, J. W.; Li, Y. Y.; Xue, L. X. et al. Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 9771–9779.

[98]

Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.

[99]

Shukla, R.; Chopra, D. Characterization of N···O non-covalent interactions involving σ-holes: “Electrostatics” or “dispersion. Phys. Chem. Chem. Phys. 2016, 18, 29946–29954.

[100]

Parcheta, M.; Świsłocka, R.; Świderski, G.; Matejczyk, M.; Lewandowski, W. Spectroscopic characterization and antioxidant properties of mandelic acid and its derivatives in a theoretical and experimental approach. Materials 2022, 15, 5413.

[101]

Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang, J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

[102]

Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

[103]

Murugan, N.; Chan-Park, M. B.; Sundramoorthy, A. K. Electrochemical detection of uric acid on exfoliated nanosheets of graphitic-like carbon nitride (g-C3N4) based sensor. J. Electrochem. Soc. 2019, 166, B3163–B3170.

[104]

Sha, R.; Vishnu, N.; Badhulika, S. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sens. Actuators B: Chem. 2019, 279, 53–60.

[105]

Zhang, X.; Zhang, Y. C.; Ma, L. X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B: Chem. 2016, 227, 488–496.

[106]

Baytak, A. K.; Aslanoglu, M. A novel sensitive method for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan using a voltammetric platform based on carbon black nanoballs. Arabian J. Chem. 2020, 13, 1702–1711.

[107]

Wang, J.; Yang, B. B.; Zhong, J. T.; Yan, B.; Zhang, K.; Zhai, C. Y.; Shiraishi, Y.; Du, Y. K.; Yang, P. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J. Colloid Interface Sci. 2017, 497, 172–180.

[108]

Kaur, B.; Pandiyan, T.; Satpati, B.; Srivastava, R. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf. B: Biointerfaces 2013, 111, 97–106.

[109]

Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J. Alloys Compd. 2018, 741, 1130–1141.

[110]

Mazzara, F.; Patella, B.; Aiello, G.; O’Riordan, A.; Torino, C.; Vilasi, A.; Inguanta, R. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim. Acta 2021, 388, 138652.

[111]

Sohouli, E.; Khosrowshahi, E. M.; Radi, P.; Naghian, E.; Rahimi-Nasrabadi, M.; Ahmadi, F. Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine. J. Electroanal. Chem. 2020, 877, 114503.

[112]

Wang, R. J.; Liu, S. S.; Song, X. D.; Jiang, K.; Hou, Y. H.; Cheng, Q. H.; Miao, W.; Tian, L.; Ren, Y.; Xu, S. K. Polypyrrole/α-Fe2O3 hybrids for enhanced electrochemical sensing performance towards uric acid. Coatings 2024, 14, 227.

[113]

Wang, C. Q.; Du, J.; Wang, H. W.; Zou, C. E.; Jiang, F. X.; Yang, P.; Du, Y. K. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B: Chem. 2014, 204, 302–309.

[114]

Liu, L. L.; Liu, L.; Wang, Y. L.; Ye, B. C. A novel electrochemical sensor based on bimetallic metal-organic framework-derived porous carbon for detection of uric acid. Talanta 2019, 199, 478–484.

[115]

Tharani, D. S.; Sivasubramanian, R. CeO2 nanocubes-based electrochemical sensor for the selective and simultaneous determination of dopamine in the presence of uric acid and ascorbic acid. J. Chem. Sci. 2023, 135, 93.

[116]

Zhao, D. Y.; Yu, G. L.; Tian, K. L.; Xu, C. X. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens. Bioelectron. 2016, 82, 119–126.

Nano Research
Article number: 94907054
Cite this article:
Li Y, Fan J, Peng J, et al. 2D S-doped g-C3N4 and V2CTx nanocomposites for ultra-sensitive electrochemical sensing uric acid. Nano Research, 2025, 18(1): 94907054. https://doi.org/10.26599/NR.2025.94907054
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return