Accurate and sensitive detection of uric acid (UA) is crucial, as abnormal UA levels are often indicative of various diseases. This work introduces a straightforward electrochemical sensor utilizing a two-dimensional (2D) nanocomposite of S-doped g-C3N4 (SCN) and V2CTx MXene (SCN/V2C), which was prepared via ball milling followed by calcination. The SCN/V2C nanocomposite demonstrates superior conductivity and a reduced band gap relative to pure g-C3N4, leading to improved electrochemical performance for UA detection. Differential pulse voltammetry (DPV) measurements revealed a limit of detection (LOD) of 1 μM for UA and a linear response range spanning from 3 μM to 1 mM. Furthermore, experimental results confirmed the excellent stability of the SCN/V2C nanocomposite. Density functional theory (DFT) calculations revealed that SCN/V2C acts as a powerful electron donor, while UA functions as an efficient electron acceptor. The electron transfer between SCN/V2C and UA is significantly greater than that with other common interfering biological molecules, leading to the highest adsorption energy of UA on the SCN/V2C surface. This strong interaction accounts for the sensor’s exceptional selectivity. This newly developed sensor provides a straightforward and highly sensitive approach for the electrochemical detection of trace levels of UA in real biological samples.
Arroquia, A.; Acosta, I.; Armada, M. P. G. Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Mater. Sci. Eng.: C 2020, 109, 110602.
Wang, H.; Wang, H. T.; Yang, J. J.; Maulida, P. Y. D.; Zou, J.; Arramel, Wu, C.; Jiang, J. Z. Black phosphorus nanosheets-based effective electrochemical sensor for uric acid detection. Carbon Lett. 2023, 33, 2161–2169.
Tukimin, N.; Abdullah, J.; Sulaiman, Y. Review-electrochemical detection of uric acid, dopamine and ascorbic acid. J. Electrochem. Soc. 2018, 165, B258–B267.
Wang, K. D.; Wu, C.; Wang, F.; Liao, M. H.; Jiang, G. Q. Bimetallic nanoparticles decorated hollow nanoporous carbon framework as nanozyme biosensor for highly sensitive electrochemical sensing of uric acid. Biosens. Bioelectron. 2020, 150, 111869.
Besbes, F.; Hsine, Z.; Mlika, R. Synthesis of heteroatoms doped reduced graphene oxide for the electrochemical determination of uric acid in commercial milk. Carbon Lett. 2023, 33, 2109–2128.
Kwon, W.; Kim, J. Y.; Suh, S.; In, M. K. Simultaneous determination of creatinine and uric acid in urine by liquid chromatography-tandem mass spectrometry with polarity switching electrospray ionization. Forensic Sci. Int. 2012, 221, 57–64.
Dobay, R.; G. Harsányi, Visy, C. Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique. Anal. Chim. Acta 1999, 385, 187–194.
Chen, Y. H.; Liu, A. R.; Wang, Y.; Li, P.; Zhuang, Y. R.; Sun, S. H.; Wang, D. Z.; Wei, W. A dual-mode strategy for diacetyl detection based on colorimetry and surface-enhanced Raman scattering. Sens. Actuators B: Chem. 2024, 405, 135336.
Bhargava, A. K.; Lal, H.; Pundir, C. S. Discrete analysis of serum uric acid with immobilized uricase and peroxidase. J. Biochem. Biophys. Methods 1999, 39, 125–136.
Fan, J.; Guo, H. Q.; Liu, G. G.; Peng, P. A. Simple and sensitive fluorimetric method for determination of environmental hormone bisphenol A based on its inhibitory effect on the redox reaction between peroxyl radical and rhodamine 6G. Anal. Chim. Acta 2007, 585, 134–138.
Rocha, D. L.; Rocha, F. R. P. A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchem. J. 2010, 94, 53–59.
Liu, Y. Q.; Lv, J. C.; Yang, L.; Cui, Y. Electrochemical uric acid sensors: Fundamentals and commercial status. J. Electrochem. Soc. 2022, 169, 127520.
Govindhan, M.; Adhikari, B. R.; Chen, A. C. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv. 2014, 4, 63741–63760.
Venkatesh, K.; Muthukutty, B.; Chen, S. M.; Karuppasamy, P.; Haidyrah, A. S.; Karuppiah, C.; Yang, C. C.; Ramaraj, S. K. Spinel CoMn2O4 nano-/micro-spheres embedded RGO nanosheets modified disposable electrode for the highly sensitive electrochemical detection of metol. J. Ind. Eng. Chem. 2022, 106, 287–296.
de Almeida Ferraz, N. V.; Vasconcelos, W. S.; Silva, C. S.; Junior, S. A.; Amorim, C. G.; M. da Conceição Branco S. M. Montenegro, M.; da Cunha Areia, M. C. Gold-copper metal-organic framework nanocomposite as a glassy carbon electrode modifier for the voltammetric detection of glutathione in commercial dietary supplements. Sens. Actuators B: Chem. 2020, 307, 127636.
Annalakshmi, M.; Kumaravel, S.; Chen, S. M.; Balasubramanian, P.; Balamurugan, T. S. T. A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sens. Actuators B: Chem. 2020, 305, 127387.
Fu, P.; Xing, S.; Xu, M. J.; Zhao, Y.; Zhao, C. Peptide nucleic acid-based electrochemical biosensor for simultaneous detection of multiple microRNAs from cancer cells with catalytic hairpin assembly amplification. Sens. Actuators B: Chem. 2020, 305, 127545.
Drummond, T. G.; Hill, M. G.; Barton, J. K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199.
Zou, Y. J.; Gu, H. F.; Yang, J. J.; Zeng, T.; Yang, J.; Zhang, Y. Y. A high sensitivity strategy of nitrite detection based on CoFe@NC nanocubes modified glassy carbon electrode. Carbon Lett. 2023, 33, 2075–2086.
Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.
Lu, Q. J.; Deng, J. H.; Hou, Y. X.; Wang, H. Y.; Li, H. T.; Zhang, Y. Y. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem. Commun. 2015, 51, 12251–12253.
Jiang, J. Z.; Ouyang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.
Qin, X.; Wan, J. B.; ·Zhang, Q.; Zhang, Y. J.; Yu, H. Z.; Shi, S. W. Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors. Carbon Lett. 2023, 33, 781–790.
Ng, S. F.; Chen, X. Z.; Foo, J. J.; Xiong, M.; Ong, W. J. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction. Chin. J. Catal. 2023, 47, 150–160.
Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.
Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019.
Huang, Z. F.; Song, J. J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. J.; Mi, W. B.; Zhang, X. W.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646–656.
Wang, D. D.; Lin, Z. X.; Miao, C.; Jiang, W.; Li, H. J.; Liu, C. B.; Che, G. B. An S-scheme photocatalyst constructed by modifying Ni-doped Sn3O4 micro-flowers on g-C3N4 nanosheets for enhanced visible-light-driven hydrogen evolution. J. Ind. Eng. Chem. 2022, 113, 380–388.
Xia, X.; Xie, C.; Xu, B. G.; Ji, X. S.; Gao, G. G.; Yang, P. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 2022, 105, 303–312.
Ma, G. X.; Ning, G. Q.; Wei, Q. S-doped carbon materials: Synthesis, properties and applications. Carbon 2022, 195, 328–340.
Sun, Y. Z.; Ning, G. Q.; Qi, C. L.; Li, J. C.; Ma, X. L.; Xu, C. G.; Li, Y. F.; Zhang, X.; Gao, J. S. An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode. Electrochim. Acta 2016, 190, 141–149.
Ma, X. L.; Ning, G. Q.; Sun, Y. Z.; Pu, Y. J.; Gao, J. S. High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 2014, 79, 310–320.
Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B: Environ. 2018, 224, 983–999.
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.
Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.
Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.
Wang, L. N.; He, G.; Wang, W. H.; Xu, X. F.; Jiang, S. S.; Fortunato, E.; Martins, R. Energy-band engineering by 2D MXene doping for high-performance homojunction transistors and logic circuits. J. Mater. Sci. Technol. 2023, 159, 41–51.
Dall’Agnese, Y.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 2015, 6, 2305–2309.
Tan, Q. Y.; Zhuang, W.; Attia, M.; Djugum, R.; Zhang, M. X. Recent progress in additive manufacturing of bulk MAX phase components: A review. J. Mater. Sci. Technol. 2022, 131, 30–47.
Yang, J. C.; Gui, Y. G.; Wang, Y. F.; He, S. S. NiO/Ti3C2T x MXene nanocomposites sensor for ammonia gas detection at room temperature. J. Ind. Eng. Chem. 2023, 119, 476–484.
Li, C.; Song, C. J.; Li, H.; Ye, L. Q.; Xu, Y. X.; Huang, Y. P.; Nie, G. Z.; Zhang, R. M.; Liu, W.; Huang, N. et al. Ultradurable fluorinated V2AlC for peroxymonosulfate activation in organic pollutant degradation processes. Chin. J. Catal. 2022, 43, 1927–1936.
Ganesh, P. S.; Kim, S. Y. Electrochemical sensing interfaces based on novel 2D-MXenes for monitoring environmental hazardous toxic compounds: A concise review. J. Ind. Eng. Chem. 2022, 109, 52–67.
Zhou, Z. Y.; Pourhashem, S.; Wang, Z. Q.; Sun, J. W.; Ji, X. H.; Zhai, X. F.; Duan, J. Z.; Hou, B. R. Mxene structure: A key parameter in corrosion barrier performance of organic coatings. J. Ind. Eng. Chem. 2022, 116, 310–320.
Luo, G. C.; Zhang, Z. L.; Wang, Y. B.; Deng, Q.; Pan, S. T.; Wang, T. F.; Li, Q. H.; Liu, K. X.; Kong, P. F.; Zhang, J. et al. A self-powered ultraviolet photodetector with van der Waals schottky junction based on TiO2 nanorod arrays/Au-modulated V2CT x MXene. J. Mater. Sci. Technol. 2023, 156, 83–91.
He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.
Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B: Environ. 2019, 258, 117956.
Tang, Q. J.; Sun, Z. X.; Deng, S.; Wang, H. Q.; Wu, Z. B. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J. Colloid Interface Sci. 2020, 564, 406–417.
Li, J. M.; Zhao, L.; Wang, S. M.; Li, J.; Wang, G. H.; Wang, J. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 515, 145922.
Pandian, K.; Kalayarasi, J.; Gopinath, S. C. B. Metal-free sulfur-doped graphitic carbon nitride-modified GCE-based electrocatalyst for the enhanced electrochemical determination of Omeprazole in Drug formulations and Biological Samples. Biotechnol. Appl. Biochem. 2022, 69, 2766–2779.
Wang, H. T.; Yu, L. L.; Peng, J. H.; Zou, J.; Gong, W. P.; Jiang, J. Z. Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution. Nano Res. 2024, 17, 8007–8016.
Wang, H. T.; Yu, L. L.; Peng, J. H.; Zou, J.; Jiang, J. Z. Strategically designing and fabricating nitrogen and sulfur Co-doped g-C3N4 for accelerating photocatalytic H2 evolution. J. Mater. Sci. Technol. 2025, 208, 111–119.
Zhang, T. R.; Jiang, X.; Li, G. C.; Yao, Q. F.; Lee, J. Y. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2T x (MXene) nanodot composite. ChemNanoMat 2018, 4, 56–60.
Zhu, K. X.; Lv, Y.; Liu, J.; Wang, W. J.; Wang, C. P.; Li, S. M.; Wang, P.; Zhang, M.; Meng, A. L.; Li, Z. J. Facile fabrication of g-C3N4/SnO2 composites and ball milling treatment for enhanced photocatalytic performance. J. Alloys Compd. 2019, 802, 13–18.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.
Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658.
Xu, J.; Hu, X. H.; Wang, X. H.; Wang, X.; Ju, Y. F.; Ge, S. H.; Lu, X. L.; Ding, J. N.; Yuan, N. Y.; Gogotsi, Y. Low-temperature pseudocapacitive energy storage in Ti3C2T x MXene. Energy Storage Mater. 2020, 33, 382–389.
Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.
Chu, T. S.; Wang, G. Y.; Zhang, X. Y.; Jia, Y. Y.; Dai, S.; Liu, X. Z.; Zhang, L.; Yang, X.; Zhang, B. W.; Xuan, F. Z. High-density dual-structure single-atom Pt electrocatalyst for efficient hydrogen evolution and multimodal sensing. Nano Lett. 2024, 24, 9666–9674.
Wang, Z. G.; Yu, K.; Feng, Y.; Qi, R. J.; Ren, J.; Zhu, Z. Q. VO2(p)-V2C(MXene) grid structure as a Lithium polysulfide catalytic host for high-performance Li–S battery. ACS Appl. Mater. Interfaces 2019, 11, 44282–44292.
Rong, C.; Su, T.; Li, Z. K.; Chu, T. S.; Zhu, M. L.; Yan, Y. B.; Zhang, B. W.; Xuan, F. Z. Elastic properties and tensile strength of 2D Ti3C2T x MXene monolayers. Nat. Commun. 2024, 15, 1566.
Zhao, P.; Zhao, W. L.; Zhang, K.; Lin, H.; Zhang, X. D. Polymeric injectable fillers for cosmetology: Current status, future trends, and regulatory perspectives. J. Appl. Polym. Sci. 2020, 137, 48515.
Xia, P. F.; Cheng, B.; Jiang, J. Z.; Tang, H. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 2019, 487, 335–342.
Bai, J. B.; Zhang, Y. N.; Chen, H.; Yang, L. X.; Bai, L. J.; Wei, D. L.; Cao, X. X.; Liang, Y.; Yang, H. W. V2CT x MXene: A promising catalyst for low-temperature aerobic oxidative desulfurization. Catal. Lett. 2023, 153, 3103–3110.
Feng, W.; Han, X. G.; Hu, H.; Chang, M. Q.; Ding, L.; Xiang, H. J.; Chen, Y.; Li, Y. H. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021, 12, 2203.
Ren, E. H.; Cui, C.; Zhai, J. Y.; Li, A.; Tang, H.; Peng, B. Y.; Guo, R. H.; Xiao, H. Y.; Zhou, M.; Zhang, J. W. Facile synthesis of V2CT x @RGO composite aerogel via hydrothermal reaction and its dye adsorption performance. J. Mater. Sci.: Mater. Electron. 2023, 34, 343.
Hu, C. Y.; E, L.; Hu, K. K.; Lai, L. Y.; Zhao, D.; Zhao, W.; Rong, H. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity. J. Mater. Sci. 2020, 55, 151–162.
Luo, X.; Dong, Y. Q.; Wang, D. Y.; Duan, Y. J.; Lei, K.; Mao, L. J.; Li, Y.; Zhao, Q.; Sun, Y. Facile synthesis of g-C3N4 nanosheets for effective degradation of organic pollutants via ball milling. Rev. Adv. Mater. Sci. 2023, 62, 20230123.
Jin, T.; Liu, C. B.; Chen, F.; Qian, J. C.; Qiu, Y. B.; Meng, X. R.; Chen, Z. G. Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for rhodamine B. Carbon Lett. 2022, 32, 1451–1462.
Shi, M. J.; Li, Y.; Wang, W. Q.; Han, R.; Luo, X. L. A super-antifouling electrochemical biosensor for protein detection in complex biofluids based on PEGylated multifunctional peptide. ACS Sens. 2024, 9, 2956–2963.
Ma, L.; Zhang, Q. R.; Wu, C.; Zhang, Y.; Zeng, L. T. PtNi bimetallic nanoparticles loaded MoS2 nanosheets: Preparation and electrochemical sensing application for the detection of dopamine and uric acid. Anal. Chim. Acta 2019, 1055, 17–25.
Katz, E.; Willner, I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme Biosensors. Electroanalysis 2003, 15, 913–947.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Manikandan, R.; Kim, J.; Ishigami, A.; Cho, J. Y.; Kim, J. H.; Han, J. T.; Lee, J.; Chang, S. C. Dispersant-free supra single-walled carbon nanotubes for simultaneous and highly sensitive biomolecule sensing in ex vivo mouse tissues. Carbon 2023, 213, 118275.
Chen, F.; Wang, J. H.; Chen, L. J.; Lin, H. L.; Han, D. X.; Bao, Y.; Wang, W.; Niu, L. A wearable electrochemical biosensor utilizing functionalized Ti3C2T x MXene for the real-time monitoring of uric acid metabolite. Anal. Chem. 2024, 96, 3914–3924.
Ambika, A. V.; Navya, N.; Kumar, S. R. K.; Suresha, B. L. Electrochemical determination of paracetamol by SWCNT-modified carbon paste electrode: A cyclic voltammetric study. Carbon Lett. 2022, 32, 1287–1295.
Amalraj, A. J. J.; Wang, S. F. Synthesis of transition metal titanium oxide (MTiO x , M = Mn, Fe, Cu) and its application in furazolidone electrochemical sensor. J. Ind. Eng. Chem. 2022, 111, 356–368.
Guan, Y. C.; Ren, Z. X.; Lang, Y.; Liu, T. Z.; Gong, Z.; Lv, Y. G. Preparation and photocatalytic degradation of sulfamethoxazole by g-C3N4 nano composite samples. Rev. Adv. Mater. Sci. 2023, 62, 20220280.
Guan, D. C.; Huang, Y.; He, M. M.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Du, K. Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries. Ionics 2021, 27, 4127–4134.
Gong, Y. T.; Gu, M. M.; Yan, M. H.; Wang, G. L. Intercalated doxorubicin acting as stimulator of PbS photocathode for probing DNA-protein interactions. Microchim. Acta 2021, 188, 426.
Gu, Y.; Wang, X. L.; Humayun, M.; Li, L. F.; Sun, H. C.; Xu, X. F.; Xue, X. Y.; Habibi-Yangjeh, A.; Temst, K.; Wang, C. D. Spin regulation on (Co, Ni)Se2/C@FeOOH hollow nanocage accelerates water oxidation. Chin. J. Catal. 2022, 43, 839–850.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Xu, F. G.; Wang, L. W.; Wu, M. J.; Ma, G. R. Vertical growth of leaf-like Co-metal organic framework on carbon fiber cloth as integrated electrode for sensitive detection of dopamine and uric acid. Sens. Actuators B: Chem. 2023, 386, 133734.
Feng, C. X.; Zhang, J. W.; Bian, C.; Li, L. Y.; Hu, R.; Chang, H. X.; Peng, F.; Peng, X. F.; Zhong, N. B. Solid-liquid-core optical fiber biosensor for highly sensitive and selective detection of 4-chlorophenol in water. Chin. Chem. Lett. 2023, 34, 108457.
He, X. M.; Bai, S. S.; Jiang, J. Z.; Ong, W. J.; Peng, J. H.; Xiong, Z. G.; Liao, G. D.; Zou, J.; Li, N. Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chem. Eng. J. Adv. 2021, 8, 100175.
Qin, Z. H.; Tang, B.; Zhang, G. R.; Zhu, C. Q.; Jiang, K.; Zhang, B. W.; Xuan, F. Z. Single-atom Ni–N4 for enhanced electrochemical sensing. Nano Res. 2024, 17, 7658–7664.
Ardakani, Y. S.; Moradi, M. DFT/TDDFT study on electronic, optical and structural properties of MAPbI3/RbSnI2Cl and MAPbI2Cl/RbXI3 (X = Pb, Sn) heterostructures. J. Cent. South Univ. 2023, 30, 1447–1460.
Xiao, J. X.; Zhu, S. M.; Bu, L. J.; Zhou, S. Q. Molecularly imprinted heterostructure-based electrochemosensor for ultratrace and precise detection of 2-methylisoborneol in water. ACS Sens. 2024, 9, 524–532.
Wang, L. Y.; Song, Y. H.; Luo, Y.; Wang, L. A novel covalent organic framework with multiple adsorption sites for removal of Hg2+ and sensitive detection of nitrofural. J. Ind. Eng. Chem. 2022, 106, 374–381.
Hu, Y.; Hu, A. J.; Wang, J. W.; Niu, X. B.; Zhou, M. J.; Chen, W.; Lei, T. Y.; Huang, J. W.; Li, Y. Y.; Xue, L. X. et al. Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 9771–9779.
Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.
Shukla, R.; Chopra, D. Characterization of N···O non-covalent interactions involving σ-holes: “Electrostatics” or “dispersion. Phys. Chem. Chem. Phys. 2016, 18, 29946–29954.
Parcheta, M.; Świsłocka, R.; Świderski, G.; Matejczyk, M.; Lewandowski, W. Spectroscopic characterization and antioxidant properties of mandelic acid and its derivatives in a theoretical and experimental approach. Materials 2022, 15, 5413.
Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang, J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.
Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.
Murugan, N.; Chan-Park, M. B.; Sundramoorthy, A. K. Electrochemical detection of uric acid on exfoliated nanosheets of graphitic-like carbon nitride (g-C3N4) based sensor. J. Electrochem. Soc. 2019, 166, B3163–B3170.
Sha, R.; Vishnu, N.; Badhulika, S. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sens. Actuators B: Chem. 2019, 279, 53–60.
Zhang, X.; Zhang, Y. C.; Ma, L. X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B: Chem. 2016, 227, 488–496.
Baytak, A. K.; Aslanoglu, M. A novel sensitive method for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan using a voltammetric platform based on carbon black nanoballs. Arabian J. Chem. 2020, 13, 1702–1711.
Wang, J.; Yang, B. B.; Zhong, J. T.; Yan, B.; Zhang, K.; Zhai, C. Y.; Shiraishi, Y.; Du, Y. K.; Yang, P. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J. Colloid Interface Sci. 2017, 497, 172–180.
Kaur, B.; Pandiyan, T.; Satpati, B.; Srivastava, R. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf. B: Biointerfaces 2013, 111, 97–106.
Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J. Alloys Compd. 2018, 741, 1130–1141.
Mazzara, F.; Patella, B.; Aiello, G.; O’Riordan, A.; Torino, C.; Vilasi, A.; Inguanta, R. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim. Acta 2021, 388, 138652.
Sohouli, E.; Khosrowshahi, E. M.; Radi, P.; Naghian, E.; Rahimi-Nasrabadi, M.; Ahmadi, F. Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine. J. Electroanal. Chem. 2020, 877, 114503.
Wang, R. J.; Liu, S. S.; Song, X. D.; Jiang, K.; Hou, Y. H.; Cheng, Q. H.; Miao, W.; Tian, L.; Ren, Y.; Xu, S. K. Polypyrrole/α-Fe2O3 hybrids for enhanced electrochemical sensing performance towards uric acid. Coatings 2024, 14, 227.
Wang, C. Q.; Du, J.; Wang, H. W.; Zou, C. E.; Jiang, F. X.; Yang, P.; Du, Y. K. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B: Chem. 2014, 204, 302–309.
Liu, L. L.; Liu, L.; Wang, Y. L.; Ye, B. C. A novel electrochemical sensor based on bimetallic metal-organic framework-derived porous carbon for detection of uric acid. Talanta 2019, 199, 478–484.
Tharani, D. S.; Sivasubramanian, R. CeO2 nanocubes-based electrochemical sensor for the selective and simultaneous determination of dopamine in the presence of uric acid and ascorbic acid. J. Chem. Sci. 2023, 135, 93.
Zhao, D. Y.; Yu, G. L.; Tian, K. L.; Xu, C. X. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens. Bioelectron. 2016, 82, 119–126.