Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The emergence of superconducting diode effect (SDE) provides a new platform to investigate the intertwining among band topology, superconductivity, and magnetism, thereby establishing the foundation for achieving ultra-low dissipation devices and circuits. The realization of the tunable zero-field SDE in two-dimension (2D) devices is significant for 2D circuits, however, there has been great challenges in the appropriate materials synergy and fine device design. Here, we report a zero-field SDE in the van der Waals (vdW) heterostructure constructed by the Ising superconducting NbSe2 and ferromagnetic Fe3GeTe2 with a large perpendicular magnetic anisotropy. Based on the valley-Zeeman spin-orbit interaction (SOI) in NbSe2, the magnitude and polarity of the zero-field SDE can be modulated by altering the ferromagnetic properties of Fe3GeTe2 through the application of pre-magnetized out-of-plane magnetic fields. Furthermore, the stable half-wave rectification of square-wave currents is achieved by utilizing the tunable zero-field SDE in the Josephson junction-free structure. The tunable zero-field SDE in 2D heterostructures brings new opportunities for understanding the coexistence of superconductivity and time-reversal symmetry breaking, and for fabricating 2D ultra-low dissipation circuits.
Hu, J. P.; Wu, C. J.; Dai, X. Proposed design of a josephson diode. Phys. Rev. Lett. 2007, 99, 067004.
Ando, F.; Miyasaka, Y.; Li, T.; Ishizuka, J.; Arakawa, T.; Shiota, Y.; Moriyama, T.; Yanase, Y.; Ono, T. Observation of superconducting diode effect. Nature 2020, 584, 373–376.
Nadeem, M.; Fuhrer, M. S.; Wang, X. L. The superconducting diode effect. Nat. Rev. Phys. 2023, 5, 558–577.
Daido, A.; Ikeda, Y.; Yanase, Y. Intrinsic superconducting diode effect. Phys. Rev. Lett. 2022, 128, 037001.
Davydova, M.; Prembabu, S.; Fu, L. Universal Josephson diode effect. Sci. Adv. 2022, 8, eabo0309.
Zhang, Y.; Gu, Y. H.; Li, P. F.; Hu, J. P.; Jiang, K. General theory of josephson diodes. Phys. Rev. X 2022, 12, 041013.
Hou, Y. S.; Nichele, F.; Chi, H.; Lodesani, A.; Wu, Y. Y.; Ritter, M. F.; Haxell, D. Z.; Davydova, M.; Ilić, S.; Glezakou-Elbert, O. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 2023, 131, 027001.
Ghosh, S.; Patil, V.; Basu, A.; Kuldeep; Dutta, A.; Jangade, D. A.; Kulkarni, R.; Thamizhavel, A.; Steiner, J. F.; von Oppen, F. et al. High-temperature Josephson diode. Nat. Mater. 2024, 23, 612–618.
Chen, P. B.; Wang, G. Q.; Ye, B. C.; Wang, J. H.; Zhou, L.; Tang, Z. Z.; Wang, L.; Wang, J. N.; Zhang, W. Q.; Mei, J. W. et al. Edelstein effect induced superconducting diode effect in inversion symmetry breaking MoTe2 josephson junctions. Adv. Funct. Mater. 2024, 34, 2311229.
Wakatsuki, R.; Saito, Y.; Hoshino, S.; Itahashi, Y. M.; Ideue, T.; Ezawa, M.; Iwasa, Y.; Nagaosa, N. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 2017, 3, e1602390.
Zhang, E. Z.; Xu, X.; Zou, Y. C.; Ai, L. F.; Dong, X.; Huang, C.; Leng, P. L.; Liu, S. S.; Zhang, Y. D.; Jia, Z. H. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 2020, 11, 5634.
Bauriedl, L.; Bäuml, C.; Fuchs, L.; Baumgartner, C.; Paulik, N.; Bauer, J. M.; Lin, K. Q.; Lupton, J. M.; Taniguchi, T.; Watanabe, K. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 2022, 13, 4266.
Baumgartner, C.; Fuchs, L.; Costa, A.; Reinhardt, S.; Gronin, S.; Gardner, G. C.; Lindemann, T.; Manfra, M. J.; Faria Junior, P. E.; Kochan, D. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 2022, 17, 39–44.
Pal, B.; Chakraborty, A.; Sivakumar, P. K.; Davydova, M.; Gopi, A. K.; Pandeya, A. K.; Krieger, J. A.; Zhang, Y.; Date, M.; Ju, S. L. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 2022, 18, 1228–1233.
de Vries, F. K.; Portolés, E.; Zheng, G.; Taniguchi, T.; Watanabe, K.; Ihn, T.; Ensslin, K.; Rickhaus, P. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. 2021, 16, 760–763.
Díez-Mérida, J.; Díez-Carlón, A.; Yang, S. Y.; Xie, Y. M.; Gao, X. J.; Senior, J.; Watanabe, K.; Taniguchi, T.; Lu, X.; Higginbotham, A. P. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 2023, 14, 2396.
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y. Superconductivity in a chiral nanotube. Nat. Commun. 2017, 8, 14465.
Yasuda, K.; Yasuda, H.; Liang, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Nagaosa, N.; Kawasaki, M.; Tokura, Y. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 2019, 10, 2734.
Kim, J. K.; Jeon, K. R.; Sivakumar, P. K.; Jeon, J.; Koerner, C.; Woltersdorf, G.; Parkin, S. S. P. Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier. Nat. Commun. 2024, 15, 1120.
Kokkeler, T. H.; Golubov, A. A.; Bergeret, F. S. Field-free anomalous junction and superconducting diode effect in spin-split superconductor/topological insulator junctions. Phys. Rev. B 2022, 106, 214504.
Scammell, H. D.; Li, J. I. A.; Scheurer, M. S. Theory of zero-field superconducting diode effect in twisted trilayer graphene. 2D Mater. 2022, 9, 025027.
Lin, J. X.; Siriviboon, P.; Scammell, H. D.; Liu, S.; Rhodes, D.; Watanabe, K.; Taniguchi, T.; Hone, J.; Scheurer, M. S.; Li, J. I. A. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 2022, 18, 1221–1227.
Narita, H.; Ishizuka, J.; Kawarazaki, R.; Kan, D.; Shiota, Y.; Moriyama, T.; Shimakawa, Y.; Ognev, A. V.; Samardak, A. S.; Yanase, Y. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 2022, 17, 823–828.
Narita, H.; Ono, T. Superconducting diode effect in artificial superlattice. JSAP Rev. 2024, 2024, 240206.
Jeon, K. R.; Kim, J. K.; Yoon, J.; Jeon, J. C.; Han, H.; Cottet, A.; Kontos, T.; Parkin, S. S. P. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 2022, 21, 1008–1013.
Wu, H.; Wang, Y. J.; Xu, Y. F.; Sivakumar, P. K.; Pasco, C.; Filippozzi, U.; Parkin, S. S. P.; Zeng, Y. J.; McQueen, T.; Ali, M. N. The field-free Josephson diode in a van der Waals heterostructure. Nature 2022, 604, 653–656.
Buzdin, A. I. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 2005, 77, 935–976.
Linder, J.; Yokoyama, T.; Sudbø, A. Theory of superconducting and magnetic proximity effect in S/F structures with inhomogeneous magnetization textures and spin-active interfaces. Phys. Rev. B 2009, 79, 054523.
Linder, J.; Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 2015, 11, 307–315.
Fulde, P.; Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 1964, 135, A550–A563.
De Gennes, P. G. Coupling between ferromagnets through a superconducting layer. Phys. Lett. 1966, 23, 10–11.
Xiong, Y. M.; Stadler, S.; Adams, P. W.; Catelani, G. Spin-resolved tunneling studies of the exchange field in EuS/Al bilayers. Phys. Rev. Lett. 2011, 106, 247001.
Strambini, E.; Golovach, V. N.; De Simoni, G.; Moodera, J. S.; Bergeret, F. S.; Giazotto, F. Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy. Phys. Rev. Mater. 2017, 1, 054402.
Tedrow, P. M.; Tkaczyk, J. E.; Kumar, A. Spin-polarized electron tunneling study of an artificially layered superconductor with internal magnetic field: EuO-Al. Phys. Rev. Lett. 1986, 56, 1746–1749.
Gutfreund, A.; Matsuki, H.; Plastovets, V.; Noah, A.; Gorzawski, L.; Fridman, N.; Yang, G.; Buzdin, A.; Millo, O.; Robinson, J. W. A. et al. Direct observation of a superconducting vortex diode. Nat. Commun. 2023, 14, 1630.
Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.
Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.
Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.
de la Barrera, S. C.; Sinko, M. R.; Gopalan, D. P.; Sivadas, N.; Seyler, K. L.; Watanabe, K.; Taniguchi, T.; Tsen, A. W.; Xu, X. D.; Xiao, D. et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427.
Wan, P. H.; Zheliuk, O.; Yuan, N. F. Q.; Peng, X. L.; Zhang, L.; Liang, M. P.; Zeitler, U.; Wiedmann, S.; Hussey, N. E.; Palstra, T. T. M. et al. Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor. Nature 2023, 619, 46–51.
Saito, Y.; Kasahara, Y.; Ye, J. T.; Iwasa, Y.; Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 2015, 350, 409–413.
Hu, G. J.; Wang, C. L.; Wang, S. S.; Zhang, Y.; Feng, Y.; Wang, Z.; Niu, Q.; Zhang, Z. Y.; Xiang, B. Long-range skin Josephson supercurrent across a van der Waals ferromagnet. Nat. Commun. 2023, 14, 1779.
Huang, C.; Zhou, B. T.; Zhang, H. Q.; Yang, B. J.; Liu, R.; Wang, H. W.; Wan, Y. M.; Huang, K.; Liao, Z. M.; Zhang, E. Z. et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat. Commun. 2019, 10, 2217.
Wakatsuki, R.; Nagaosa, N. Nonreciprocal current in noncentrosymmetric rashba superconductors. Phys. Rev. Lett. 2018, 121, 026601.
Yang, Y. T.; Qin, W.; Chen, Y. R.; Zhang, S. H.; Cui, P.; Zhang, Z. Y. Endowing the Ising superconductor NbSe2 with nontrivial band topology via proximity coupling with the two-dimensional ferromagnet Fe3GeTe2. Phys. Rev. B 2024, 109, L041112.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
515
Views
134
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).