AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Tunable zero-field superconducting diode effect in two-dimensional ferromagnetic/superconducting Fe3GeTe2/NbSe2 heterostructure

Guojing Hu1,§Yechao Han2,§Weiqi Yu1Senhao Lv1Yuhui Li1,2Zizhao Gong1Hui Guo1,2Ke Zhu1,2Zhen Zhao1,2Qi Qi1,2Guoyu Xian1,2Lihong Bao1,2,3( )Xiao Lin2Jinbo Pan1,2( )Shixuan Du1,2Haitao Yang1,2,3( )Hong-Jun Gao1,2,3
Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China

§ Guojing Hu and Yechao Han contributed equally to this work.

Show Author Information

Graphical Abstract

A zero-field superconducting diode effect (SDE) was observed in two-dimensional (2D) ferromagnetic/superconducting Fe3GeTe2/NbSe2 heterostructure, and the magnitude and polarity of the zero-field SDE can be modulated by altering the ferromagnetic properties of Fe3GeTe2 layer. The tunable zero-field SDE in 2D heterostructures brings new opportunities for understanding the coexistence of superconductivity and time-reversal symmetry breaking, and for fabricating 2D ultra-low dissipation circuits.

Abstract

The emergence of superconducting diode effect (SDE) provides a new platform to investigate the intertwining among band topology, superconductivity, and magnetism, thereby establishing the foundation for achieving ultra-low dissipation devices and circuits. The realization of the tunable zero-field SDE in two-dimension (2D) devices is significant for 2D circuits, however, there has been great challenges in the appropriate materials synergy and fine device design. Here, we report a zero-field SDE in the van der Waals (vdW) heterostructure constructed by the Ising superconducting NbSe2 and ferromagnetic Fe3GeTe2 with a large perpendicular magnetic anisotropy. Based on the valley-Zeeman spin-orbit interaction (SOI) in NbSe2, the magnitude and polarity of the zero-field SDE can be modulated by altering the ferromagnetic properties of Fe3GeTe2 through the application of pre-magnetized out-of-plane magnetic fields. Furthermore, the stable half-wave rectification of square-wave currents is achieved by utilizing the tunable zero-field SDE in the Josephson junction-free structure. The tunable zero-field SDE in 2D heterostructures brings new opportunities for understanding the coexistence of superconductivity and time-reversal symmetry breaking, and for fabricating 2D ultra-low dissipation circuits.

Electronic Supplementary Material

Download File(s)
7068_ESM.pdf (2.1 MB)

References

[1]

Hu, J. P.; Wu, C. J.; Dai, X. Proposed design of a josephson diode. Phys. Rev. Lett. 2007, 99, 067004.

[2]

Ando, F.; Miyasaka, Y.; Li, T.; Ishizuka, J.; Arakawa, T.; Shiota, Y.; Moriyama, T.; Yanase, Y.; Ono, T. Observation of superconducting diode effect. Nature 2020, 584, 373–376.

[3]

Nadeem, M.; Fuhrer, M. S.; Wang, X. L. The superconducting diode effect. Nat. Rev. Phys. 2023, 5, 558–577.

[4]

Daido, A.; Ikeda, Y.; Yanase, Y. Intrinsic superconducting diode effect. Phys. Rev. Lett. 2022, 128, 037001.

[5]

Davydova, M.; Prembabu, S.; Fu, L. Universal Josephson diode effect. Sci. Adv. 2022, 8, eabo0309.

[6]

Zhang, Y.; Gu, Y. H.; Li, P. F.; Hu, J. P.; Jiang, K. General theory of josephson diodes. Phys. Rev. X 2022, 12, 041013.

[7]

Hou, Y. S.; Nichele, F.; Chi, H.; Lodesani, A.; Wu, Y. Y.; Ritter, M. F.; Haxell, D. Z.; Davydova, M.; Ilić, S.; Glezakou-Elbert, O. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 2023, 131, 027001.

[8]

Ghosh, S.; Patil, V.; Basu, A.; Kuldeep; Dutta, A.; Jangade, D. A.; Kulkarni, R.; Thamizhavel, A.; Steiner, J. F.; von Oppen, F. et al. High-temperature Josephson diode. Nat. Mater. 2024, 23, 612–618.

[9]

Chen, P. B.; Wang, G. Q.; Ye, B. C.; Wang, J. H.; Zhou, L.; Tang, Z. Z.; Wang, L.; Wang, J. N.; Zhang, W. Q.; Mei, J. W. et al. Edelstein effect induced superconducting diode effect in inversion symmetry breaking MoTe2 josephson junctions. Adv. Funct. Mater. 2024, 34, 2311229.

[10]

Wakatsuki, R.; Saito, Y.; Hoshino, S.; Itahashi, Y. M.; Ideue, T.; Ezawa, M.; Iwasa, Y.; Nagaosa, N. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 2017, 3, e1602390.

[11]

Zhang, E. Z.; Xu, X.; Zou, Y. C.; Ai, L. F.; Dong, X.; Huang, C.; Leng, P. L.; Liu, S. S.; Zhang, Y. D.; Jia, Z. H. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 2020, 11, 5634.

[12]

Bauriedl, L.; Bäuml, C.; Fuchs, L.; Baumgartner, C.; Paulik, N.; Bauer, J. M.; Lin, K. Q.; Lupton, J. M.; Taniguchi, T.; Watanabe, K. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 2022, 13, 4266.

[13]

Baumgartner, C.; Fuchs, L.; Costa, A.; Reinhardt, S.; Gronin, S.; Gardner, G. C.; Lindemann, T.; Manfra, M. J.; Faria Junior, P. E.; Kochan, D. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 2022, 17, 39–44.

[14]

Pal, B.; Chakraborty, A.; Sivakumar, P. K.; Davydova, M.; Gopi, A. K.; Pandeya, A. K.; Krieger, J. A.; Zhang, Y.; Date, M.; Ju, S. L. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 2022, 18, 1228–1233.

[15]

de Vries, F. K.; Portolés, E.; Zheng, G.; Taniguchi, T.; Watanabe, K.; Ihn, T.; Ensslin, K.; Rickhaus, P. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. 2021, 16, 760–763.

[16]

Díez-Mérida, J.; Díez-Carlón, A.; Yang, S. Y.; Xie, Y. M.; Gao, X. J.; Senior, J.; Watanabe, K.; Taniguchi, T.; Lu, X.; Higginbotham, A. P. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 2023, 14, 2396.

[17]

Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y. Superconductivity in a chiral nanotube. Nat. Commun. 2017, 8, 14465.

[18]

Yasuda, K.; Yasuda, H.; Liang, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Nagaosa, N.; Kawasaki, M.; Tokura, Y. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 2019, 10, 2734.

[19]

Kim, J. K.; Jeon, K. R.; Sivakumar, P. K.; Jeon, J.; Koerner, C.; Woltersdorf, G.; Parkin, S. S. P. Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier. Nat. Commun. 2024, 15, 1120.

[20]

Kokkeler, T. H.; Golubov, A. A.; Bergeret, F. S. Field-free anomalous junction and superconducting diode effect in spin-split superconductor/topological insulator junctions. Phys. Rev. B 2022, 106, 214504.

[21]

Scammell, H. D.; Li, J. I. A.; Scheurer, M. S. Theory of zero-field superconducting diode effect in twisted trilayer graphene. 2D Mater. 2022, 9, 025027.

[22]

Lin, J. X.; Siriviboon, P.; Scammell, H. D.; Liu, S.; Rhodes, D.; Watanabe, K.; Taniguchi, T.; Hone, J.; Scheurer, M. S.; Li, J. I. A. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 2022, 18, 1221–1227.

[23]

Narita, H.; Ishizuka, J.; Kawarazaki, R.; Kan, D.; Shiota, Y.; Moriyama, T.; Shimakawa, Y.; Ognev, A. V.; Samardak, A. S.; Yanase, Y. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 2022, 17, 823–828.

[24]

Narita, H.; Ono, T. Superconducting diode effect in artificial superlattice. JSAP Rev. 2024, 2024, 240206.

[25]

Jeon, K. R.; Kim, J. K.; Yoon, J.; Jeon, J. C.; Han, H.; Cottet, A.; Kontos, T.; Parkin, S. S. P. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 2022, 21, 1008–1013.

[26]

Wu, H.; Wang, Y. J.; Xu, Y. F.; Sivakumar, P. K.; Pasco, C.; Filippozzi, U.; Parkin, S. S. P.; Zeng, Y. J.; McQueen, T.; Ali, M. N. The field-free Josephson diode in a van der Waals heterostructure. Nature 2022, 604, 653–656.

[27]

Buzdin, A. I. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 2005, 77, 935–976.

[28]

Linder, J.; Yokoyama, T.; Sudbø, A. Theory of superconducting and magnetic proximity effect in S/F structures with inhomogeneous magnetization textures and spin-active interfaces. Phys. Rev. B 2009, 79, 054523.

[29]

Linder, J.; Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 2015, 11, 307–315.

[30]

Fulde, P.; Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 1964, 135, A550–A563.

[31]

De Gennes, P. G. Coupling between ferromagnets through a superconducting layer. Phys. Lett. 1966, 23, 10–11.

[32]

Xiong, Y. M.; Stadler, S.; Adams, P. W.; Catelani, G. Spin-resolved tunneling studies of the exchange field in EuS/Al bilayers. Phys. Rev. Lett. 2011, 106, 247001.

[33]

Strambini, E.; Golovach, V. N.; De Simoni, G.; Moodera, J. S.; Bergeret, F. S.; Giazotto, F. Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy. Phys. Rev. Mater. 2017, 1, 054402.

[34]

Tedrow, P. M.; Tkaczyk, J. E.; Kumar, A. Spin-polarized electron tunneling study of an artificially layered superconductor with internal magnetic field: EuO-Al. Phys. Rev. Lett. 1986, 56, 1746–1749.

[35]

Gutfreund, A.; Matsuki, H.; Plastovets, V.; Noah, A.; Gorzawski, L.; Fridman, N.; Yang, G.; Buzdin, A.; Millo, O.; Robinson, J. W. A. et al. Direct observation of a superconducting vortex diode. Nat. Commun. 2023, 14, 1630.

[36]

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

[37]

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

[38]

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

[39]

de la Barrera, S. C.; Sinko, M. R.; Gopalan, D. P.; Sivadas, N.; Seyler, K. L.; Watanabe, K.; Taniguchi, T.; Tsen, A. W.; Xu, X. D.; Xiao, D. et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427.

[40]

Wan, P. H.; Zheliuk, O.; Yuan, N. F. Q.; Peng, X. L.; Zhang, L.; Liang, M. P.; Zeitler, U.; Wiedmann, S.; Hussey, N. E.; Palstra, T. T. M. et al. Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor. Nature 2023, 619, 46–51.

[41]

Saito, Y.; Kasahara, Y.; Ye, J. T.; Iwasa, Y.; Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 2015, 350, 409–413.

[42]

Hu, G. J.; Wang, C. L.; Wang, S. S.; Zhang, Y.; Feng, Y.; Wang, Z.; Niu, Q.; Zhang, Z. Y.; Xiang, B. Long-range skin Josephson supercurrent across a van der Waals ferromagnet. Nat. Commun. 2023, 14, 1779.

[43]

Huang, C.; Zhou, B. T.; Zhang, H. Q.; Yang, B. J.; Liu, R.; Wang, H. W.; Wan, Y. M.; Huang, K.; Liao, Z. M.; Zhang, E. Z. et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat. Commun. 2019, 10, 2217.

[44]

Wakatsuki, R.; Nagaosa, N. Nonreciprocal current in noncentrosymmetric rashba superconductors. Phys. Rev. Lett. 2018, 121, 026601.

[45]

Yang, Y. T.; Qin, W.; Chen, Y. R.; Zhang, S. H.; Cui, P.; Zhang, Z. Y. Endowing the Ising superconductor NbSe2 with nontrivial band topology via proximity coupling with the two-dimensional ferromagnet Fe3GeTe2. Phys. Rev. B 2024, 109, L041112.

[46]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[47]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[48]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[49]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[50]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

Nano Research
Article number: 94907068
Cite this article:
Hu G, Han Y, Yu W, et al. Tunable zero-field superconducting diode effect in two-dimensional ferromagnetic/superconducting Fe3GeTe2/NbSe2 heterostructure. Nano Research, 2025, 18(1): 94907068. https://doi.org/10.26599/NR.2025.94907068
Topics:

515

Views

134

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 July 2024
Revised: 05 October 2024
Accepted: 11 October 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return