PDF (10.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Research Article | Open Access

Amino-functionalized and Na+ pre-intercalated three-dimensional Ti3C2Tx film aerogel with excellent electrochemical performances for supercapacitor

Xinhui Jin1Dejie Mo1Lirong Feng1Dong Wang1Baolian Su2Xiaohui Guo1()
Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
Department of inorganic chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
Show Author Information

Graphical Abstract

View original image Download original image
A kind of novel amino-functionalized and Na+ pre-intercalated three-dimensional (3D) Ti3C2Tx (where T is −O, −OH, −F, and/or −NH2, and x represents the number of such groups)-MXene film aerogels were successfully proposed via a solid-state foaming method. The 3D Na-Ti3C2Tx film aerogel can deliver high specific capacitance of 560 F·g−1 in 0.5 M H2SO4. And the assembled flexible all-solid-state supercapacitor (ASC) exhibits 52.8 Wh·kg−1 high energy density at 1600 W·kg−1, demonstrating their promising application in wearable electronic fields.

Abstract

Precise modulation of the pore structure and modification of the surface groups (–NH2) of MXene aerogels by the solid foaming method in combination with Na+ pre-intercalation can significantly increase the layer spacing and change the electronic structure of MXene, thereby significantly optimizing its electrochemical performance. The three-dimensional (3D) network structure provides numerous active sites on the surface of MXene and provides more ion transfer pathways and the large layer spacing allows electrolyte ions fast transport and the surface groups provide more active sites for the pseudocapacitive reaction. As a result, the prepared Na-Ti3C2Tx (where T is –O, –OH, –F, and/or –NH2, and x represents the number of such groups) film aerogel delivers a high mass specific capacitance of 560 F·g−1 and excellent cycling performance of 94.5% capacitance retention after 12,000 cycles in 0.5 M H2SO4. In addition, the flexible all-solid-state supercapacitor (ASC) composed of MXene film electrodes has excellent specific capacitance ~ 277 F·g−1 and high energy density ~ 52.8 Wh·kg−1 at 1600 W·kg−1. Therefore, this work not only proposes a feasible synthetic method that can precisely regulate the pore structure and surface features of film aerogels, but also demonstrates the broad application prospects of aerogel materials in wearable power devices.

Electronic Supplementary Material

Download File(s)
7092_ESM.pdf (1.6 MB)

References

[1]

Xu, W. T.; Xu, Z.; Liang, Y. X.; Liu, L. M.; Weng, W. Enhanced tensile and electrochemical performance of MXene/CNT hierarchical film. Nanotechnology 2021, 32, 355706.

[2]

Li, H. Z.; Du, T. Y.; Wang, Q.; Guo, J. Y.; Zhang, S. Y.; Lu, Y. A new synthesis of O/N-doped porous carbon material for supercapacitors. J. Energy Storage 2023, 66, 107397.

[3]

Zhang, Y. H.; Shang, Z.; Shen, M. X.; Chowdhury, S. P.; Ignaszak, A.; Sun, S. H.; Ni, Y. H. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 11175–11185.

[4]

Zhou, L.; Zhang, J.; Wu, Y. Q.; Wang, W. X.; Ming, H.; Sun, Q. J.; Wang, L. M.; Ming, J.; Alshareef, H. N. Understanding ostwald ripening and surface charging effects in solvothermally-prepared metal oxide-carbon anodes for high performance rechargeable batteries. Adv. Energy Mater. 2019, 9, 1902194.

[5]

Li, Q.; Cao, Z.; Cheng, H. R.; Zhang, J. L.; Ma, Z.; Wahyudi, W.; Cavallo, L.; Sun, Q. J.; Ming, J. Electrolyte boosting microdumbbell-structured alloy/metal oxide anode for fast-charging sodium-ion batteries. ACS Materials Lett. 2022, 4, 2469–2479.

[6]

Fu, J. J.; Yun, J.; Wu, S. X.; Li, L.; Yu, L. T.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CT X @polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 34212–34221.

[7]

Xiao, Z. M.; Sun, K. S.; Zheng, Y.; Pang, J. X.; Gu, T. T.; Kong, W. W.; Chen, L. Implementation of high-capacity 3D Ti3C2T X MXene supercapacitors with terminal group modification. ACS Appl. Mater. Interfaces 2023, 15, 51151–51159.

[8]

Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; Faraz Ud Din, M.; Yin, X. T.; Que, W. X. Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 2018, 8, 1802087.

[9]

Dall’Agnese, Y.; Lukatskaya, M. R.; Cook, K. M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014, 48, 118–122.

[10]

Liang, K.; Matsumoto, R. A.; Zhao, W.; Osti, N. C.; Popov, I.; Thapaliya, B. P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M. et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater. 2021, 31, 2104007.

[11]

Ren, S.; Xu, J. L.; Cheng, L.; Gao, X.; Wang, S. D. Amine-assisted delaminated 2D Ti3C2T X MXenes for high specific capacitance in neutral aqueous electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 35878–35888.

[12]

Cai, C. Y.; Wei, Z. C.; Deng, L. X.; Fu, Y. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors. ACS Appl. Mater. Interfaces 2021, 13, 54170–54184.

[13]

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

[14]

Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

[15]

Xu, J. S.; You, J. H.; Wang, L.; Wang, Z. Y.; Zhang, H. Z. MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement. Sustain. Mater. Technol. 2022, 33, e00490.

[16]

Li, K. L.; Zhang, P.; Soomro, R. A.; Xu, B. Alkali-induced porous MXene/carbon nanotube-based film electrodes for supercapacitors. ACS Appl. Nano Mater. 2022, 5, 4180–4186.

[17]

Wang, Y.; Li, J. M.; Han, W. J.; Zhao, C. M.; Xu, S. C.; Wang, D.; Yu, Z. L.; Lu, M.; Li, H. B.; Zhang, M. Z. Multi-ion competition mechanism within MXene interlayer and Li ion intercalated electrode function. Appl. Surf. Sci. 2023, 623, 157043.

[18]

Yuan, Z. X.; Ju, S. L.; Li, W. Q.; Guo, H. N.; Chen, K.; Yue, M. Y.; Yu, X. B.; Wang, Y. J. Alkali ions pre-intercalated 3D crinkled Ti3C2T x MXene architectures for advanced sodium storage. Chem. Eng. J. 2022, 450, 138453.

[19]

Al-Temimy, A.; Prenger, K.; Golnak, R.; Lounasvuori, M.; Naguib, M.; Petit, T. Impact of cation intercalation on the electronic structure of Ti3C2T x MXenes in sulfuric acid. ACS Appl. Mater. Interfaces 2020, 12, 15087–15094.

[20]

Liu, L. Y.; Raymundo-Piñero, E.; Sunny, S.; Taberna, P. L.; Simon, P. Role of surface terminations for charge storage of Ti3C2T x MXene electrodes in aqueous acidic electrolyte. Angew. Chem., Int. Ed. 2024, 63, e202319238.

[21]

Saha, A.; Shpigel, N.; Rosy; Leifer, N.; Taragin, S.; Sharabani, T.; Aviv, H.; Perelshtein, I.; Nessim, G. D.; Noked, M. et al. Enhancing the energy storage capabilities of Ti3C2T x MXene electrodes by atomic surface reduction. Adv. Funct. Mater. 2021, 31, 2106294.

[22]

Moatasim, M.; Wang, Z. X.; Xie, Y. T.; Huang, H. C.; Chen, N. J.; Wang, Y. C.; Zhao, H. B.; Zhang, H. T.; Yang, W. Q. Solving gravimetric-volumetric capacitive paradox of 2D materials through dual-functional chemical bonding-induced self-constructing graphene-MXene monoliths. ACS Appl. Mater. Interfaces 2021, 13, 6339–6348.

[23]

Lu, Z. Q.; Jia, F. F.; Zhuo, L. H.; Ning, D. D.; Gao, K.; Xie, F. Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. B: Eng. 2021, 217, 108853.

[24]

Huang, X. W.; Huang, J. H.; Yang, D.; Wu, P. Y. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Adv. Sci. 2021, 8, 2101664.

[25]

Pang, K.; Song, X.; Xu, Z.; Liu, X. T.; Liu, Y. J.; Zhong, L.; Peng, Y. X.; Wang, J. X.; Zhou, J. Z.; Meng, F. X. et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 2020, 6, eabd4045.

[26]

Shao, H.; Xu, K.; Wu, Y. C.; Iadecola, A.; Liu, L. Y.; Ma, H. Y.; Qu, L. T.; Raymundo-Piñero, E.; Zhu, J. X.; Lin, Z. E. et al. Unraveling the charge storage mechanism of Ti3C2T x MXene electrode in acidic electrolyte. ACS Energy Lett. 2020, 5, 2873–2880.

[27]

Li, L.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 2017, 364, 234–241.

[28]

Hu, B.; Shang, X. H.; Nie, P. F.; Zhang, B. S.; Xu, K. B.; Yang, J. M.; Qiu, J. S.; Liu, J. Y. Facile fabrication of a highly porous N-doped nanotubular carbon aerogel by an in situ template-growth method for high-performance supercapacitors. ACS Appl. Energy Mater. 2021, 4, 6991–7001.

[29]

Wang, P. X.; Zhang, Y.; Yin, Y. Y.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. In situ synthesis of CuCo2S4@N/S-doped graphene composites with pseudocapacitive properties for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 11708–11714.

[30]

Xie, L. J.; Su, F. Y.; Xie, L. F.; Li, X. M.; Liu, Z.; Kong, Q. Q.; Guo, X. H.; Zhang, Y. Y.; Wan, L.; Li, K. X. et al. Self-assembled 3D graphene-based aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode. ChemSusChem 2015, 8, 2917–2926.

[31]

Zhao, Q.; Zhu, Q. Z.; Miao, J. W.; Zhang, P.; Wan, P. B.; He, L. Z.; Xu, B. Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small 2019, 15, 1904293.

[32]

Xin, W.; Ma, M. G.; Chen, F. Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding. ACS Appl. Nano Mater. 2021, 4, 7234–7243.

[33]

Cai, G. N.; Yu, Z. Z.; Tong, P.; Tang, D. P. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 2019, 11, 15659–15667.

[34]

Ai, F. R.; Fu, C. J.; Cheng, G. J.; Zhang, H. H.; Feng, Y. C.; Yan, X. L.; Zheng, X. J. Amino-functionalized Ti3C2 MXene quantum dots as photoluminescent sensors for diagnosing histidine in human serum. ACS Appl. Nano Mater. 2021, 4, 8192–8199.

[35]

Meng, X. Y.; Sun, Y. F.; Yu, M. Z.; Wang, Z. Y.; Qiu, J. S. Hydrogen-bonding crosslinking MXene to highly robust and ultralight aerogels for strengthening lithium metal anode. Small Sci. 2021, 1, 2100021.

[36]

Li, N.; Wei, X. Y.; Mei, Z.; Xiong, X. L.; Chen, S. M.; Ye, M.; Ding, S. G. Synthesis and characterization of a novel polyamidoamine-cyclodextrin crosslinked copolymer. Carbohydr. Res. 2011, 346, 1721–1727.

[37]

Zhou, L.; Wu, F. M.; Yu, J. H.; Deng, Q. H.; Zhang, F. A.; Wang, G. Titanium carbide (Ti3C2T x ) MXene: A novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 2017, 118, 50–57.

[38]

Yoon, Y.; Lee, M.; Kim, S. K.; Bae, G.; Song, W.; Myung, S.; Lim, J.; Lee, S. S.; Zyung, T.; An, K. S. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Adv. Energy Mater. 2018, 8, 1703173.

[39]

Yao, M. Y.; Chen, Y. Y.; Wang, Z.; Shao, C. M.; Dong, J.; Zhang, Q. H.; Zhang, L. L.; Zhao, X. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chem. Eng. J. 2020, 395, 124057.

[40]

Li, T. F.; Yao, L. L.; Liu, Q. L.; Gu, J. J.; Luo, R. C.; Li, J. H.; Yan, X. D.; Wang, W. Q.; Liu, P.; Chen, B. et al. Fluorine-free synthesis of high-purity Ti3C2T x (T = OH, O) via alkali treatment. Angew. Chem., Int. Ed. 2018, 57, 6115–6119.

[41]

Zhang, T.; Matthews, K.; VahidMohammadi, A.; Han, M. K.; Gogotsi, Y. Pseudocapacitance of vanadium carbide MXenes in basic and acidic aqueous electrolytes. ACS Energy Lett. 2022, 7, 3864–3870.

[42]

Feng, C.; Zhao, Z. L.; Luo, C. Y.; Wang, Y.; Wu, X. M.; Chen, W. X. Electrochemical storage mechanism of interstratification-assembled Ti3C2T x MXene/NiCo-LDHs electrode in alkaline, acid and neutral electrolytes. Ceram. Int. 2022, 48, 3884–3894.

[43]

Sun, Q. J.; Cao, Z.; Zhang, J. L.; Cheng, H. R.; Zhang, J.; Li, Q.; Ming, H.; Liu, G.; Ming, J. Metal catalyst to construct carbon nanotubes networks on metal oxide microparticles towards designing high-performance electrode for high-voltage lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2009122.

[44]

Wei, X. C.; Cai, M.; Yuan, F. L.; Lu, D.; Li, C.; Huang, H. F.; Xu, S. K.; Liang, X. Q.; Zhou, W. Z.; Guo, J. The surface functional modification of Ti3C2T x MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor. Appl. Surf. Sci. 2022, 606, 154817.

[45]

Liu, X. L.; Lu, Z. J.; Huang, X. N.; Bai, J. F.; Li, C.; Tu, C. J.; Chen, X. X. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors. J. Power Sources 2021, 516, 230682.

Nano Research
Article number: 94907092
Cite this article:
Jin X, Mo D, Feng L, et al. Amino-functionalized and Na+ pre-intercalated three-dimensional Ti3C2Tx film aerogel with excellent electrochemical performances for supercapacitor. Nano Research, 2025, 18(2): 94907092. https://doi.org/10.26599/NR.2025.94907092
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return