PDF (33.4 MB)
Collect
Submit Manuscript
Show Outline
Figures (10)

Show 1 more figures Hide 1 figures
Research Article | Open Access

Three-dimensional lightweight melamine foams modified by MXene sheets and CoNi alloys towards multifunctional microwave absorption

Nannan Wu1,§()Zhengying Shen1,§Yitao Ma1Zhizheng Wu2Chuanxin Hou3()Sijie Guo4Jian Tian1()Jiurong Liu5()
School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
School of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China

§ Nannan Wu and Zhengying Shen contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The multifunctional three-dimensional (3D) MF@MXene/CoNi@C foams were fabricated successfully and displayed outstanding microwave absorption, infrared stealth, and light-to-thermal conversions.

Abstract

Taking the increasing issue of electromagnetic waves (EMW) pollution and the necessity for applications in extreme environments, there is a pressing requirement to create multifunctional microwave absorption materials (MAMs) to meet the current challenges. In this work, we achieved the successful combination of MXene sheets and metal organic framework (MOFs) derived CoNi@C magnetic alloys onto the three-dimensional (3D) melamine foam (MF) skeleton using vacuum impregnation and electrostatic self-assembly techniques. The obtained MF@MXene/CoNi@C composite foams achieved outstanding MA performance, with an optimal reflection loss (RL) value of –24.1 dB and a maximum effective absorption bandwidth (EAB) of 6.88 GHz at a thickness of 1.68 mm, effectively covering the whole Ku band. The superior MA performance is ascribed to the composite foams’ multi-component architecture, distinctive 3D porous structure, and the synergistic impact of multiple loss mechanisms. Moreover, the MF@MXene/CoNi@C composite foams demonstrate exceptional photothermal conversion, thermal insulation, and infrared stealth capabilities, effectively coping with the demands of applications in extreme environments. This work serves as a valuable resource and source of inspiration for the development of lightweight-broadband, multifunctional efficient MAMs.

Electronic Supplementary Material

Download File(s)
7121_ESM.pdf (1.9 MB)

References

[1]

Hao, Z. W.; Zhou, J.; Lin, S. N.; Lan, D.; Li, H. Y.; Wang, H.; Liu, D.; Gu, J. W.; Wang, X. B.; Wu, G. L. Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 2024, 228, 119323.

[2]

Hu, K. X.; Wang, H. H.; Zhang, X.; Huang, H.; Qiu, T.; Wang, Y.; Zhang, C. F.; Pan, L. M.; Yang, J. Ultralight Ti3C2T x MXene foam with superior microwave absorption performance. Chem. Eng. J. 2021, 408, 127283.

[3]

Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-based microwave absorption materials. Carbon 2021, 174, 484–499.

[4]
Jia, Z. R.; Liu, J. K.; Gao, Z. G.; Zhang, C. H.; Wu, G. L. Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202405523.
[5]

Zhang, Y.; Zuo, X. P.; Zhang, S.; Ma, Z. L.; Zhang, G. C. Flexible multifunctional magnetic-conductive Janus nanocomposite films towards highly-efficient electromagnetic interference shielding and thermal management. Compos. Sci. Technol. 2024, 256, 110756.

[6]

Zhang, Y.; Wang, J.; Wu, Q. L.; Shan, T.; Bai, S. J.; Lan, D.; Zhang, B.; Liu, Y. Q.; Su, X. G. Enhanced electromagnetic wave absorption of bacterial cellulose/ reduced graphene oxide aerogel by eco-friendly in-situ construction. J. Colloid Interface Sci. 2025, 678, 648–655.

[7]

Cui, Y. H.; Wu, F.; Wang, J. Q.; Wang, Y. B.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Compos. Part A: Appl. Sci. Manuf. 2021, 145, 106378.

[8]

Cheng, J. Y.; Zhang, H. B.; Wang, H. H.; Huang, Z. H.; Raza, H.; Hou, C. X.; Zheng, G. P.; Zhang, D. Q.; Zheng, Q. B.; Che, R. C. Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 2022, 32, 2201129.

[9]
Zhu, J. H.; Lan, D.; Liu, X. H.; Zhang, S. H.; Jia, Z. R.; Wu, G. L. Porous structure fibers based on multi-element heterogeneous components for optimized electromagnetic wave absorption and self-anticorrosion performance. Small, in press, https://doi.org/10.1002/smll.202403689.
[10]

Zhou, Z. H.; Lan, D.; Ren, J. W.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 185, 165–173.

[11]

Xie, X. B.; Wang, H. S.; Kimura, H.; Ni, C.; Du, W.; Wu, G. L. NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 2024, 31, 2274–2286.

[12]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[13]

Cheng, H. R.; Pan, Y. M.; Wang, X.; Liu, C. T.; Shen, C. Y.; Schubert, D. W.; Guo, Z. H.; Liu, X. H. Ni Flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022, 14, 63.

[14]
Zhang, S. J.; Zheng, J. J.; Lan, D.; Gao, Z. G.; Liang, X. W.; Tian, Q. F.; Zhao, Z. W.; Wu, G. L. Hierarchical engineering on built-in electric field of bimetallic zeolitic imidazolate derivatives towards amplified dielectric loss. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202413884.
[15]

Jia, Z. R.; Sun, L. F.; Gao, Z. G.; Lan, D. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res. 2024, 17, 10099–10108.

[16]

Shen, X.; Kim, J. K. Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 2023, 16, 1387–1413.

[17]

He, Y. F.; Su, Q.; Liu, D. D.; Xia, L.; Huang, X. X.; Lan, D.; Liu, Y. N.; Huang, Y. D.; Zhong, B. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 2024, 491, 152041.

[18]

Su, X. G.; Zhang, Y.; Wang, J.; Liu, Y. Q. Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C 2024, 12, 7775–7783.

[19]

Tang, X. W.; Zhao, X.; Lu, Y. Z.; Li, S. S.; Zhang, Z. H.; Zhu, M. Y.; Yao, K. Q.; Zheng, J. X.; Chen, H. J.; Duan, Y. Q. et al. Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 2024, 480, 148000.

[20]

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

[21]

Han, Y.; Lan, D.; Han, M. J.; Xia, Z. H.; Zou, J. X.; Jia, Z. R. Construction of flower-like MoS2 decorated on Cu doped CoZn-ZIF derived N-doped carbon as superior microwave absorber. Nano Res. 2024, 17, 8250–8260.

[22]

Li, S. S.; Mo, W. J.; Liu, Y.; Wang, Q. Constructing 3D tent-like frameworks in melamine hybrid foam for superior microwave absorption and thermal insulation. Chem. Eng. J. 2023, 454, 140133.

[23]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[24]

Xu, B.; Gogotsi, Y. MXenes: From discovery to applications. Adv. Funct. Mater. 2020, 30, 2007011.

[25]

Liu, Z. K.; Chen, J.; Que, M. D.; Zheng, H. Q.; Yang, L. F.; Yuan, H. D.; Ma, Y. Z.; Li, Y. J.; Yang, X. F. 2D Ti3C2T x MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption. Chem. Eng. J. 2022, 450, 138442.

[26]

Cheng, H. R.; Pan, Y. M.; Li, W.; Liu, C. T.; Shen, C. Y.; Liu, X. H.; Pan, C. F. Facile design of multifunctional melamine foam with Ni-anchored reduced graphene oxide/MXene as highly efficient microwave absorber. Nano Today 2023, 52, 101958.

[27]

Pan, F.; Yu, L. Z.; Xiang, Z.; Liu, Z. C.; Deng, B. W.; Cui, E. B.; Shi, Z.; Li, X.; Lu, W. Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 2021, 172, 506–515.

[28]

Li, X.; You, W. B.; Wang, L.; Liu, J. W.; Wu, Z. C.; Pei, K.; Li, Y. S.; Che, R. C. Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 2019, 11, 44536–44544.

[29]

Ning, Y. H.; Yang, M. L.; Zhao, Z. B.; Sun, X. X.; Yang, S.; Wang, S. S.; Liang, L.; Cheng, Y. J.; Yin, W. L.; Yuan, Y. et al. Anisotropic electromagnetic absorption of the aligned Ti3C2T x MXene/RGO nanocomposite foam. Compos. Sci. Technol. 2022, 227, 109609.

[30]

Jia, Z. R.; Lan, D.; Chang, M.; Han, Y.; Wu, G. L. Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers. Mater. Today Phys. 2023, 37, 101215.

[31]

Zhang, Y.; Zhang, G. C.; Ma, Z. L.; Qin, J. B.; Shen, X. Heterogeneous MXene-based films with graded electrical conductivity towards highly efficient EMI shielding and electrothermal heating. Nano Res. 2024, 17, 7264–7274.

[32]

Pan, F.; Cai, L.; Shi, Y. Y.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Wang, X.; Jiang, Y. F.; Lu, W. Heterointerface engineering of β-chitin/carbon nano-onions/Ni-P composites with boosted Maxwell-Wagner-Sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 2022, 14, 85.

[33]

Zhang, Z. H.; Li, S. S.; Zhao, X.; Tang, X. W.; Lu, Y. Z.; Zhu, M. Y.; Chen, H. J.; Wang, Z. X.; Hu, Z. Y.; Long, L. J. et al. Lightweight polymethacrylimide based composites foam with efficient infrared stealth and microwave transparent performance. Compos. Commun. 2024, 47, 101865.

[34]

Gao, Z. H.; Shi, Y. N.; Ma, L. X.; Du, J.; Qiu, J. Bioinspired hierarchical composite for multiband defense. ACS Appl. Mater. Interfaces 2024, 16, 49687–49700.

[35]

Xu, Z. J.; Ding, X.; Li, S. K.; Huang, F. Z.; Wang, B. J.; Wang, S. P.; Zhang, X.; Liu, F. H.; Zhang, H. Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 2022, 14, 40396–40407.

[36]

Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

[37]

Zhao, T. B.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Wu, G. L. Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. 2024, 17, 9845–9856.

[38]

Zhang, H.; Ma, H. Y.; Ma, Y. H.; Lou, Y. M.; Jiao, Y. H.; Xu, J. Z. Hierarchical boric acid/melamine aerogel based on reversible hydrogen bonds with robust fire resistance, thermal insulation and recycling properties. Compos. Part B: Eng. 2023, 252, 110507.

[39]

Shi, H. D.; Yue, M.; Zhang, C. J.; Dong, Y. F.; Lu, P. F.; Zheng, S. H.; Huang, H. J.; Chen, J.; Wen, P. C.; Xu, Z. C. et al. 3D flexible, conductive, and recyclable Ti3C2T x MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 2020, 14, 8678–8688.

[40]

Fan, L.; Zhuang, H. L.; Zhang, W. D.; Fu, Y.; Liao, Z. H.; Lu, Y. Y. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv. Energy Mater. 2018, 8, 1703360.

[41]

Wu, D.; Lan, D.; Li, Y. Q.; Zhou, N. F.; He, Q. C.; Wang, Y. Q. Heterostructure engineering of N-doped Co@carbon nanotubes toward broadband efficient electromagnetic absorption. Colloids Surf. A: Physicochem. Eng. Aspects 2024, 702, 135161.

[42]

Adomaviciute-Grabusove, S.; Popov, A.; Ramanavicius, S.; Sablinskas, V.; Shevchuk, K.; Gogotsi, O.; Baginskiy, I.; Gogotsi, Y.; Ramanavicius, A. Monitoring Ti3C2T x MXene degradation pathways using Raman spectroscopy. ACS Nano 2024, 18, 13184–13195.

[43]

Su, X. G.; Wang, J.; Liu, T.; Zhang, Y.; Liu, Y. N.; Zhang, B.; Liu, Y. Q.; Wu, H. J.; Xu, H. X. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 2024, 34, 2403397.

[44]

Lu, Y. F.; Li, D. S.; Liu, F. Characterizing the chemical structure of Ti3C2T x MXene by angle-resolved XPS combined with argon ion etching. Materials 2022, 15, 307.

[45]

Ma, W. J.; Cai, W. R.; Chen, W. H.; Liu, P. J.; Wang, J. F.; Liu, Z. X. A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 130729.

[46]

Liu, G. L.; Liu, X. F.; Song, Z. M.; Sun, X.; Li, Y.; Shui, J. L.; Yu, R. H. Hollow double-shell structured Void@SiO2@Co-C composite for broadband electromagnetic wave absorption. Chem. Eng. J. 2021, 417, 128093.

[47]

Shen, Z. Y.; Lan, D.; Cong, Y.; Lian, Y. Y.; Wu, N. N.; Jia, Z. R. Tailored heterogeneous interface based on porous hollow In-Co-C nanorods to construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 2024, 181, 128–137.

[48]

Liu, Y.; Ren, X. Y.; Zhou, X. F.; Lan, D.; Gao, Z. G.; Jia, Z. R.; Wu, G. L. Defect design and vacancy engineering of NiCo2Se4 spinel composite for excellent electromagnetic wave absorption. Ceram. Int. 2024, 50, 46643–46652.

[49]

Xu, D. M.; Qiao, J.; Wu, N. N.; Liu, W.; Wang, F. L.; Lv, L. F.; Pan, J. B.; Dong, Y. Z.; Liu, J. R. Facile synthesis of three-dimensional porous Co/MnO composites derived from bimetal oxides for highly efficient electromagnetic wave absorption. ACS Sustain. Chem. Eng. 2019, 7, 8687–8695.

[50]

Yang, N.; Luo, Z. X.; Zhu, G. R.; Chen, S. C.; Wang, X. L.; Wu, G.; Wang, Y. Z. Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 35987–35998.

[51]

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

[52]

Zhang, S. J.; Lan, D.; Zheng, J. J.; Zhao, Z. W.; Jia, Z. R.; Wu, G. L. Insights into polarization relaxation of electromagnetic wave absorption. Cell Rep. Phys. Sci. 2024, 5, 102206.

[53]

Dong, Y. H.; Lan, D.; Xu, S.; Gu, J. W.; Jia, Z. R.; Wu, G. L. Controllable fiberization engineering of cobalt anchored mesoporous hollow carbon spheres for positive feedback to electromagnetic wave absorption. Carbon 2024, 228, 119339.

[54]

Tan, D. L.; Wang, Q.; Li, M. R.; Song, L. M.; Zhang, F.; Min, Z. Y.; Wang, H. L.; Zhu, Y. Q.; Zhang, R.; Lan, D. et al. Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2024, 492, 152245.

[55]

Liu, D. W.; Yang, L.; Wang, F. Y.; Zhang, H.; Liu, J.; Lv, T.; Zhao, H. J.; Du, Y. C. Hierarchical carbon nanotubes@Ni/C foams for high-performance microwave absorption. Carbon 2022, 196, 867–876.

[56]

Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

[57]

Li, X.; Wu, Z. C.; You, W. B.; Yang, L. T.; Che, R. C. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 2022, 14, 73.

[58]

Guo, Z. Q.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Shi, X. T.; He, M. K.; Guo, H.; Wu, G. L.; Yin, P. F. Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 2025, 17, 23.

[59]

Han, M. J.; Lan, D.; Zhang, Z. M.; Zhao, Y. Z.; Zou, J. X.; Gao, Z. G.; Wu, G. L.; Jia, Z. R. Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 214, 302–312.

[60]

Xu, X. Q.; Ran, F. T.; Lai, H.; Cheng, Z. J.; Lv, T.; Shao, L.; Liu, Y. Y. In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 2019, 11, 35999–36009.

[61]

Yang, K.; Cui, Y. H.; Wan, L. Y.; Wang, Y. B.; Tariq, M. R.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Preparation of three-dimensional Mo2C/NC@MXene and its efficient electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2022, 14, 7109–7120.

[62]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[63]

Jia, Z. R.; Zhang, X. Y.; Gu, Z.; Wu, G. L. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 2023, 6, 28.

[64]

Toneguzzo, P.; Viau, G.; Acher, O.; Fiévet-Vincent, F.; Fiévet, F. Monodisperse ferromagnetic particles for microwave applications. 3.0.CO;2-M">Adv. Mater. 1998, 10, 1032–1035.

[65]

Cai, L.; Pan, F.; Zhu, X. J.; Dong, Y. Y.; Shi, Y. Y.; Xiang, Z.; Cheng, J.; Jiang, H. J.; Shi, Z.; Lu, W. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865.

[66]

Wu, N. N.; Zhao, B. B.; Lian, Y. Y.; Liu, S. S.; Xian, Y.; Gu, J. W.; Wu, G. L. Metal organic frameworks derived Ni x Se y @NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 2024, 226, 119215.

[67]
Sun, C. H.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Wu, G. L. Kirkendall effect-induced ternary heterointerfaces engineering for high polarization loss MOF-LDH-MXene absorbers. Small, in press, https://doi.org/10.1002/smll.202405874.
[68]

Yang, X.; Xuan, L. X.; Men, W. W.; Wu, X.; Lan, D.; Shi, Y. P.; Jia, H. X.; Duan, Y. P. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 2024, 491, 151862.

[69]

Yin, P. F.; Luo, Y. M.; Lan, D.; Wang, J.; Feng, X.; Jia, Z. R.; Wu, G. L.; Zhang, Y. Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties. J. Mater. Sci. Technol. 2024, 180, 12–22.

[70]

Zhang, H.; Zhao, Y. P.; Zuo, X. Q.; Huang, H.; Sun, C.; Fan, Z.; Pan, L. J. Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness. Chem. Eng. J. 2023, 467, 143414.

[71]

Chang, Q. L.; Li, C. P.; Sui, J.; Waterhouse, G. I. N.; Zhang, Z. M.; Yu, L. M. Cage-like eggshell membrane-derived Co-Co x S y -Ni/N,S-codoped carbon composites for electromagnetic wave absorption. Chem. Eng. J. 2022, 430, 132650.

[72]

Zhang, Y.; Lan, D.; Hou, T. Q.; Jia, M. S.; Jia, Z. R.; Gu, J. W.; Wu, G. L. Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2T X MXene fabric with ultra-wide absorption band. Carbon 2024, 230, 119594.

[73]

Ma, G. J.; Lan, D.; Zhang, Y.; Sun, X. Y.; Jia, Z. R.; Wu, G. L.; Bu, G. X.; Yin, P. F. Microporous cobalt ferrite with bio-carbon loosely decorated to construct multi-functional composite for dye adsorption, anti-bacteria and electromagnetic protection. Small 2024, 45, 2404449.

[74]

Du, Y. Q.; Yan, Z. K.; You, W. B.; Men, Q. Q.; Chen, G. Y.; Lv, X. W.; Wu, Y. Y.; Luo, K. C.; Zhao, B.; Zhang, J. C. et al. Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 2023, 33, 2301449.

[75]

Chen, F.; Zhang, S. S.; Ma, B. B.; Xiong, Y.; Luo, H.; Cheng, Y. Z.; Li, X. C.; Wang, X.; Gong, R. Z. Bimetallic CoFe-MOF@Ti3C2T x MXene derived composites for broadband microwave absorption. Chem. Eng. J. 2022, 431, 134007.

[76]
Zhou, X. D.; Zhang, H. B.; Yuan, M. Y.; Li, B. X.; Cui, J. C.; Qian, Y. T.; Liu, Y. H.; Yu, L. H.; Xiong, X. H.; Du, Y. Q. et al. Dispersing magnetic nanoparticles into staggered, porous Nano-frameworks: Weaving and visualizing nanoscale magnetic flux lines for enhanced electromagnetic absorption. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202314541.
[77]

Hou, X. W.; Wen, J. Y.; Wang, W. J.; Ye, W. P.; Zhang, Y.; Wang, S.; Cao, K. Y.; Zhao, R.; Xue, W. D. Electrostatic self-assembly hollow-VOOH/MXene composite for microwave absorption. Compos. Commun. 2023, 41, 101635.

[78]

Chao, M.; Chu, N.; Zhang, B.; Luo, C. J.; Yan, L. K. MXene/carbon fiber/polyimide composite aerogel for multifunctional microwave absorption. Compos. Commun. 2024, 46, 101837.

[79]

Wu, F.; Liu, Z. H.; Wang, J. Q.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 2021, 422, 130591.

[80]

Jiang, J.; Lan, D.; Li, Y. Q.; Yang, J.; Deng, S. L.; He, Q. C.; Wang, Y. Q. Construction of spherical heterogeneous interface on ZnFe2O4@C composite nanofibers for highly efficient microwave absorption. Ceram. Int. 2024, 50, 38331–38341.

[81]

Cheng, Y. H.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Liu, X. H.; Shi, X. T.; He, M. K.; Guo, H.; Wu, G. L. MOF derivatives anchored to multichannel hollow carbon fibers with gradient structures for corrosion resistance and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 216, 150–164.

[82]

Li, S. S.; Zhu, M. Y.; Li, W.; Lu, Y. Z.; Tang, X. W.; Chen, H. J.; Wang, Z. X.; Xu, M. Y.; Li, Y.; Hu, Z. Y. et al. Hierarchical polyimide-based composite foam for compatible multi-band stealth. J. Mater. Sci. Technol. 2025, 215, 315–326.

[83]

Qiao, J.; Song, Q. H.; Xuan, L. X.; Liu, J. R.; Zhang, X.; Zheng, S. N.; Lin, J. P.; Cai, W. Q.; Zhang, Q. D.; Zeng, Z. H. et al. Dual cross-linked magnetic MXene aerogel with high strength and durability enables multifunctionality. Adv. Funct. Mater. 2024, 34, 2401687.

[84]

Zhao, X.; Tang, X. W.; Qiao, Y. L.; Li, S. S.; Zhang, Z. H.; Lu, Y. Z.; Zhu, M. Y.; Hu, Z. Y.; Long, L. J.; Wang, Z. C. et al. Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance. Nano Res. 2024, 17, 6700–6712.

[85]

Wang, J. F.; Shen, M. M.; Liu, Z. X.; Wang, W. J. MXene materials for advanced thermal management and thermal energy utilization. Nano Energy 2022, 97, 107177.

[86]

Ding, R. J.; Yan, Q.; Xue, F. H.; Li, P. Y.; Xiong, J. H.; Zhao, X.; Liu, Z. L.; Xu, L. L.; Chen, Z.; Zheng, H. W. et al. Dual protective porous Ti3C2T x MXene/polyimide composite film for thermal insulation and electromagnetic interference shielding. Small 2023, 19, 2304946.

[87]

Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

Nano Research
Article number: 94907121
Cite this article:
Wu N, Shen Z, Ma Y, et al. Three-dimensional lightweight melamine foams modified by MXene sheets and CoNi alloys towards multifunctional microwave absorption. Nano Research, 2025, 18(2): 94907121. https://doi.org/10.26599/NR.2025.94907121
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return