AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

PIN quantum-dot LEDs with enhanced efficiency and stability enabled by bulk-heterojunction hole transport layer

Heng Zhang1,§ ( )Zhe Wang1,§Dawei Yang1Bingsuo Zou1 ( )Shuming Chen2 ( )
School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

§ Heng Zhang and Zhe Wang contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, we propose a novel trilayer p-type/intrinsic/n-type (PIN) quantum-dot light-emitting diode (QLED) with only three functional layers: PTAA:TFB:F4-TCNQ bulk-heterojunction hole transport layer, quantum-dot emitting layer, and ZnMgO electron transport layer. After optimization, the obtained trilayer PIN QLED can exhibit an excellent external quantum efficiency (EQE) of 25.1% and an impressive peak luminance of 382,600 cd/m2, which are significantly higher than those of the control device.

Abstract

Although quantum-dot light-emitting diodes (QLEDs) can exhibit high efficiency and long lifetime, the realization of QLEDs-based displays remains challenging due to their complex multilayer architectures and the use of unstable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole injection layer (HIL). Here, we develop a novel trilayer p-type/intrinsic/n-type (PIN) QLED with only three functional layers: PTAA:TFB:F4-TCNQ (PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]; TFB: poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)]; F4-TCNQ: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) bulk-heterojunction (BHJ) hole transport layer (HTL), quantum-dot emitting layer, and ZnMgO electron transport layer. Due to well-matched energy level, increased hole transport path from PTAA to TFB, and improved hole density and enhanced hole mobility of the PTAA:TFB:F4-TCNQ BHJ HTL, the resultant trilayer PIN QLED exhibits a high external quantum efficiency (EQE) of 25.1% and an impressive peak brightness of 382,600 cd/m2, which are significantly higher than those of the control QLED. Moreover, the trilayer PIN QLED also shows a 1.94-fold longer operational lifetime than control QLED due to the improved device performance, reduced charge accumulation, and removal of unstable PEDOT:PSS. The developed trilayer PIN QLED, with fewer functional layers and better stability, could promote the practical application of QLED in displays and solid-state lighting.

Electronic Supplementary Material

Download File(s)
7155_ESM.pdf (3.9 MB)

References

[1]

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

[2]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[3]

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

[4]

Qian, L.; Zheng, Y.; Xue, J. E.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

[5]

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. E.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

[6]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[7]

Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

[8]

Kim, D. C.; Yun, H.; Kim, J.; Seung, H.; Yu, W. S.; Koo, J. H.; Yang, J.; Kim, J. H.; Hyeon, T.; Kim, D. H. Three-dimensional foldable quantum dot light-emitting diodes. Nat. Electron. 2021, 4, 671–680.

[9]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[10]

Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R. Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-fermi-level splitting. Nat. Nanotechnol. 2023, 18, 1168–1174.

[11]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[12]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284.

[13]

Zhang, W. J.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q. L.; Wang, L.; Yan, J. H.; Wang, F. F.; Chong, Y. H. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783.

[14]

Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2106276.

[15]

Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

[16]

Chen, Z. N.; Li, H. T.; Yuan, C. X.; Gao, P. L.; Su, Q.; Chen, S. M. Color revolution: Prospects and challenges of quantum-dot light-emitting diode display technologies. Small Methods 2024, 8, 2300359.

[17]

Hong, G.; Gan, X. M.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; Bräse, S. A brief history of OLEDs-emitter development and industry milestones. Adv. Mater. 2021, 33, 2005630.

[18]

Baldo, M. A.; Thompson, M. E.; Forrest, S. R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 2000, 403, 750–753.

[19]

Kim, J. U.; Park, I. S.; Chan, C. Y.; Tanaka, M.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nat. Commun. 2020, 11, 1765.

[20]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[21]

Yang, C. Y.; Ma, R.; Wang, Z.; Wang, Y. Y.; Yu, C. Y.; Liu, Y. G.; Wan, Y. F.; Li, J. F.; Tong, J. F.; Zhang, P. et al. Efficient quantum dot light-emitting diode enabled by a thick inorganic CdS interfacial modification layer. ACS Appl. Mater. Interfaces 2023, 15, 54185–54191.

[22]

Sun, Y. Z.; Jiang, Y. B.; Peng, H. R.; Wei, J. L.; Zhang, S. D.; Chen, S. M. Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer. Nanoscale 2017, 9, 8962–8969.

[23]

Cameron, J.; Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 2020, 7, 1759–1772.

[24]

Phan, T. N. L.; Kim, J.; Kim, G. U.; Lee, S.; Kim, B. J. Aniline-based hole transporting materials for high-performance organic solar cells with enhanced ambient stability. J. Mater. Chem. A 2021, 9, 15787–15797.

[25]

Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R. Degradation of organic solar cells due to air exposure. Solar Energy Mater. Solar Cells 2006, 90, 3520–3530.

[26]

Yang, X. Y.; Mutlugun, E.; Zhao, Y. B.; Gao, Y., Leck, K. S.; Ma, Y. Y.; Ke, L.; Tan, S. T.; Demir, H. V.; Sun, X. W. Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes. Small 2014, 10, 247–252.

[27]

Zhang, H.; Sun, X. W.; Chen, S. M. Over 100 cd A−1 efficient quantum dot light-emitting diodes with inverted tandem structure. Adv. Funct. Mater. 2017, 27, 1700610.

[28]

Wang, F. Z.; Wang, Z. Y.; Zhu, X. D.; Bai, Y. M.; Yang, Y., Hu, S. Q.; Liu, Y. Q.; You, B. G.; Wang, J.; Li, Y. et al. Highly efficient and super stable full-color quantum dots light-emitting diodes with solution-processed all-inorganic charge transport layers. Small 2021, 17, 2007363.

[29]

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

[30]

Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, 2006178.

[31]

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

[32]

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

[33]

Greiner, M. T.; Helander, M. G.; Tang, W. M.; Wang, Z. B.; Qiu, J.; Lu, Z. H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76–81.

[34]

Zhang, H.; Wang, S. T.; Sun, X. W.; Chen, S. M. Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes. J. Mater. Chem. C 2017, 5, 817–823.

[35]

Nie, L. T.; Fan, J. P.; Li, Y. B.; Xiang, C. Y.; Zhang, T. Direct optical patterning of MoO3 nanoparticles and their application as a hole injection layer for solution-processed quantum dot light-emitting diodes. ACS Appl. Nano Mater. 2024, 7, 9499–9506.

[36]

Yang, X. Y.; Ma, Y. Y.; Mutlugun, E.; Zhao, Y. B.; Leck, K. S.; Tan, S. T.; Demir, H. V.; Zhang, Q. Y.; Du, H. J.; Sun, X. W. Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers. ACS Appl. Mater. Interfaces 2014, 6, 495–499.

[37]

Wan, H. Y.; Jung, E. D.; Zhu, T.; Park, S. M.; Pina, J. M.; Xia, P.; Bertens, K.; Wang, Y. K.; Atan, O.; Chen, H. J. et al. Nickel oxide hole injection layers for balanced charge injection in quantum dot light-emitting diodes. Small 2024, 20, 2402371.

[38]

Lin, J.; Dai, X. L.; Liang, X. Y.; Chen, D. S.; Zheng, X. R.; Li, Y. F.; Deng, Y. Z.; Du, H.; Ye, Y. X.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiO x hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.

[39]

Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250.

[40]

Lei, S. Y.; Xiao, Y. Y.; Yu, K. L.; Xiao, B.; Wan, M.; Zou, L. Y.; You, Q. L.; Yang, R. Q. Revisiting hole injection in quantum dot light-emitting diodes. Adv. Funct. Mater. 2023, 33, 2305732.

[41]

Su, Q.; Zhang, H.; Chen, S. M. Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl. Phys. Lett. 2020, 117, 053502.

[42]

Kim, J.; Hahm, D.; Bae, W. K.; Lee, H.; Kwak, J. Transient dynamics of charges and excitons in quantum dot light-emitting diodes. Small 2022, 18, 2202290.

[43]

Liao, Z. B.; Mallem, K.; Prodanov, M. F.; Kang, C. B.; Gao, Y. Y.; Song, J. X.; Vashchenko, V. V.; Srivastava, A. K. Ultralow roll-off quantum dot light-emitting diodes using engineered carrier injection layer. Adv. Mater. 2023, 35, 2303950.

[44]

Bao, H.; Chen, C. L.; Cao, Y. Q.; Chang, S.; Wang, S. P.; Zhong, H. Z. Quantitative determination of charge accumulation and recombination in operational quantum dots light emitting diodes via time-resolved electroluminescence spectroscopy. J. Phys. Chem. Lett. 2023, 14, 1777–1783.

Nano Research
Article number: 94907155
Cite this article:
Zhang H, Wang Z, Yang D, et al. PIN quantum-dot LEDs with enhanced efficiency and stability enabled by bulk-heterojunction hole transport layer. Nano Research, 2025, 18(2): 94907155. https://doi.org/10.26599/NR.2025.94907155
Topics:

782

Views

193

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 September 2024
Revised: 03 November 2024
Accepted: 25 November 2024
Published: 09 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return