PDF (15.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Tables (1)
Table 1
Research Article | Open Access

PIN quantum-dot LEDs with enhanced efficiency and stability enabled by bulk-heterojunction hole transport layer

Heng Zhang1,§ ()Zhe Wang1,§Dawei Yang1Bingsuo Zou1 ()Shuming Chen2 ()
School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

§ Heng Zhang and Zhe Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
In this work, we propose a novel trilayer p-type/intrinsic/n-type (PIN) quantum-dot light-emitting diode (QLED) with only three functional layers: PTAA:TFB:F4-TCNQ bulk-heterojunction hole transport layer, quantum-dot emitting layer, and ZnMgO electron transport layer. After optimization, the obtained trilayer PIN QLED can exhibit an excellent external quantum efficiency (EQE) of 25.1% and an impressive peak luminance of 382,600 cd/m2, which are significantly higher than those of the control device.

Abstract

Although quantum-dot light-emitting diodes (QLEDs) can exhibit high efficiency and long lifetime, the realization of QLEDs-based displays remains challenging due to their complex multilayer architectures and the use of unstable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole injection layer (HIL). Here, we develop a novel trilayer p-type/intrinsic/n-type (PIN) QLED with only three functional layers: PTAA:TFB:F4-TCNQ (PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]; TFB: poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)]; F4-TCNQ: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) bulk-heterojunction (BHJ) hole transport layer (HTL), quantum-dot emitting layer, and ZnMgO electron transport layer. Due to well-matched energy level, increased hole transport path from PTAA to TFB, and improved hole density and enhanced hole mobility of the PTAA:TFB:F4-TCNQ BHJ HTL, the resultant trilayer PIN QLED exhibits a high external quantum efficiency (EQE) of 25.1% and an impressive peak brightness of 382,600 cd/m2, which are significantly higher than those of the control QLED. Moreover, the trilayer PIN QLED also shows a 1.94-fold longer operational lifetime than control QLED due to the improved device performance, reduced charge accumulation, and removal of unstable PEDOT:PSS. The developed trilayer PIN QLED, with fewer functional layers and better stability, could promote the practical application of QLED in displays and solid-state lighting.

Electronic Supplementary Material

Download File(s)
7155_ESM.pdf (3.9 MB)

References

[1]

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

[2]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[3]

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

[4]

Qian, L.; Zheng, Y.; Xue, J. E.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

[5]

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. E.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

[6]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[7]

Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

[8]

Kim, D. C.; Yun, H.; Kim, J.; Seung, H.; Yu, W. S.; Koo, J. H.; Yang, J.; Kim, J. H.; Hyeon, T.; Kim, D. H. Three-dimensional foldable quantum dot light-emitting diodes. Nat. Electron. 2021, 4, 671–680.

[9]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[10]

Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R. Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-fermi-level splitting. Nat. Nanotechnol. 2023, 18, 1168–1174.

[11]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[12]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284.

[13]

Zhang, W. J.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q. L.; Wang, L.; Yan, J. H.; Wang, F. F.; Chong, Y. H. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783.

[14]

Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2106276.

[15]

Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

[16]

Chen, Z. N.; Li, H. T.; Yuan, C. X.; Gao, P. L.; Su, Q.; Chen, S. M. Color revolution: Prospects and challenges of quantum-dot light-emitting diode display technologies. Small Methods 2024, 8, 2300359.

[17]

Hong, G.; Gan, X. M.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; Bräse, S. A brief history of OLEDs-emitter development and industry milestones. Adv. Mater. 2021, 33, 2005630.

[18]

Baldo, M. A.; Thompson, M. E.; Forrest, S. R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 2000, 403, 750–753.

[19]

Kim, J. U.; Park, I. S.; Chan, C. Y.; Tanaka, M.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nat. Commun. 2020, 11, 1765.

[20]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[21]

Yang, C. Y.; Ma, R.; Wang, Z.; Wang, Y. Y.; Yu, C. Y.; Liu, Y. G.; Wan, Y. F.; Li, J. F.; Tong, J. F.; Zhang, P. et al. Efficient quantum dot light-emitting diode enabled by a thick inorganic CdS interfacial modification layer. ACS Appl. Mater. Interfaces 2023, 15, 54185–54191.

[22]

Sun, Y. Z.; Jiang, Y. B.; Peng, H. R.; Wei, J. L.; Zhang, S. D.; Chen, S. M. Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer. Nanoscale 2017, 9, 8962–8969.

[23]

Cameron, J.; Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 2020, 7, 1759–1772.

[24]

Phan, T. N. L.; Kim, J.; Kim, G. U.; Lee, S.; Kim, B. J. Aniline-based hole transporting materials for high-performance organic solar cells with enhanced ambient stability. J. Mater. Chem. A 2021, 9, 15787–15797.

[25]

Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R. Degradation of organic solar cells due to air exposure. Solar Energy Mater. Solar Cells 2006, 90, 3520–3530.

[26]

Yang, X. Y.; Mutlugun, E.; Zhao, Y. B.; Gao, Y., Leck, K. S.; Ma, Y. Y.; Ke, L.; Tan, S. T.; Demir, H. V.; Sun, X. W. Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes. Small 2014, 10, 247–252.

[27]

Zhang, H.; Sun, X. W.; Chen, S. M. Over 100 cd A−1 efficient quantum dot light-emitting diodes with inverted tandem structure. Adv. Funct. Mater. 2017, 27, 1700610.

[28]

Wang, F. Z.; Wang, Z. Y.; Zhu, X. D.; Bai, Y. M.; Yang, Y., Hu, S. Q.; Liu, Y. Q.; You, B. G.; Wang, J.; Li, Y. et al. Highly efficient and super stable full-color quantum dots light-emitting diodes with solution-processed all-inorganic charge transport layers. Small 2021, 17, 2007363.

[29]

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

[30]

Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, 2006178.

[31]

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

[32]

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

[33]

Greiner, M. T.; Helander, M. G.; Tang, W. M.; Wang, Z. B.; Qiu, J.; Lu, Z. H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76–81.

[34]

Zhang, H.; Wang, S. T.; Sun, X. W.; Chen, S. M. Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes. J. Mater. Chem. C 2017, 5, 817–823.

[35]

Nie, L. T.; Fan, J. P.; Li, Y. B.; Xiang, C. Y.; Zhang, T. Direct optical patterning of MoO3 nanoparticles and their application as a hole injection layer for solution-processed quantum dot light-emitting diodes. ACS Appl. Nano Mater. 2024, 7, 9499–9506.

[36]

Yang, X. Y.; Ma, Y. Y.; Mutlugun, E.; Zhao, Y. B.; Leck, K. S.; Tan, S. T.; Demir, H. V.; Zhang, Q. Y.; Du, H. J.; Sun, X. W. Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers. ACS Appl. Mater. Interfaces 2014, 6, 495–499.

[37]

Wan, H. Y.; Jung, E. D.; Zhu, T.; Park, S. M.; Pina, J. M.; Xia, P.; Bertens, K.; Wang, Y. K.; Atan, O.; Chen, H. J. et al. Nickel oxide hole injection layers for balanced charge injection in quantum dot light-emitting diodes. Small 2024, 20, 2402371.

[38]

Lin, J.; Dai, X. L.; Liang, X. Y.; Chen, D. S.; Zheng, X. R.; Li, Y. F.; Deng, Y. Z.; Du, H.; Ye, Y. X.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiO x hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.

[39]

Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250.

[40]

Lei, S. Y.; Xiao, Y. Y.; Yu, K. L.; Xiao, B.; Wan, M.; Zou, L. Y.; You, Q. L.; Yang, R. Q. Revisiting hole injection in quantum dot light-emitting diodes. Adv. Funct. Mater. 2023, 33, 2305732.

[41]

Su, Q.; Zhang, H.; Chen, S. M. Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl. Phys. Lett. 2020, 117, 053502.

[42]

Kim, J.; Hahm, D.; Bae, W. K.; Lee, H.; Kwak, J. Transient dynamics of charges and excitons in quantum dot light-emitting diodes. Small 2022, 18, 2202290.

[43]

Liao, Z. B.; Mallem, K.; Prodanov, M. F.; Kang, C. B.; Gao, Y. Y.; Song, J. X.; Vashchenko, V. V.; Srivastava, A. K. Ultralow roll-off quantum dot light-emitting diodes using engineered carrier injection layer. Adv. Mater. 2023, 35, 2303950.

[44]

Bao, H.; Chen, C. L.; Cao, Y. Q.; Chang, S.; Wang, S. P.; Zhong, H. Z. Quantitative determination of charge accumulation and recombination in operational quantum dots light emitting diodes via time-resolved electroluminescence spectroscopy. J. Phys. Chem. Lett. 2023, 14, 1777–1783.

Nano Research
Article number: 94907155
Cite this article:
Zhang H, Wang Z, Yang D, et al. PIN quantum-dot LEDs with enhanced efficiency and stability enabled by bulk-heterojunction hole transport layer. Nano Research, 2025, 18(2): 94907155. https://doi.org/10.26599/NR.2025.94907155
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return