The controlled growth of perovskite nanowires along predefined orientations offers significant advantages over traditional post-growth assembly strategies, facilitating their integration into compact functional devices. In this study, a nanogroove-confined recrystallization process is designed for the precise and scalable growth of oriented perovskite nanowires with millimeter lengths and high crystallinity. The process involves annealing a perovskite-containing solution sandwiched between a hydrophobic flat silicon wafer and a hydrophilic faceted sapphire wafer featuring parallel nanogrooves at 90 °C under ambient conditions. By customizing the electrode design, the nanowire arrays can be seamlessly integrated into monolithic photodetectors with large detection areas or into photodetector arrays with multiple microscale detector cells on their growth substrate. This in-situ integration strategy eliminates the need for complex post-growth processing steps. The photodetectors exhibit exceptional responsivity (38.4 A·W−1), detectivity (4.35 × 1013 Jones), and response times in tens of microseconds across the ultraviolet–visible–near infrared ray (UV–vis–NIR) spectrum. The seamless integration of the nanowire photodetectors opens avenues for practical applications, including high-contrast optical imaging and efficient data transmission through Morse code encoding, leveraging their high on-off current ratios and rapid response. This innovative approach streamlines the growth of highly oriented perovskite nanowires, facilitating their integration into compact optoelectronic devices.
Yu, W. L.; Li, F.; Yu, L. Y.; Niazi, M. R.; Zou, Y. T.; Corzo, D.; Basu, A.; Ma, C.; Dey, S.; Tietze, M. L. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 2018, 9, 5354.
Wang, M.; Cao, F. R.; Li, L. Metal halide perovskite nano/microwires. Small Struct. 2022, 3, 2100165.
Shao, W. H.; Kim, J. H.; Simon, J.; Nian, Z. C.; Baek, S. D.; Lu, Y.; Fruhling, C. B.; Yang, H. J.; Wang, K.; Park, J. Y. et al. Molecular templating of layered halide perovskite nanowires. Science 2024, 384, 1000–1006.
Bai, J. L.; Wang, H. B.; Ma, J. P.; Zhao, Y. J.; Lu, H. L.; Zhang, Y. X.; Gull, S.; Qiao, T. J.; Qin, W.; Chen, Y. S. et al. Wafer-scale patterning integration of chiral 3D perovskite single crystals toward high-performance full-stokes polarimeter. J. Am. Chem. Soc. 2024, 146, 18771–18780.
Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.
Deng, W.; Jie, J. S.; Xu, X. Z.; Xiao, Y. L.; Lu, B.; Zhang, X. J.; Zhang, X. H. A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 2020, 32, 1908340.
Ren, B. T.; Zhang, D. Q.; Qiu, X.; Ding, Y. C.; Zhang, Q. P.; Fu, Y.; Liao, J. F.; Poddar, S.; Chan, C. L. J.; Cao, B. et al. Full-color fiber light-emitting diodes based on perovskite quantum wires. Sci. Adv. 2024, 10, eadn1095.
Wang, R.; Xiang, H. Y.; Li, Y.; Zhou, Y. H.; Shan, Q. S.; Su, Y. Q.; Li, Z.; Wang, Y. J.; Zeng, H. B. Minimizing energy barrier in intermediate connection layer for monolithic tandem WPeLEDs with wide color gamut. Adv. Funct. Mater. 2023, 33, 2215189.
Cao, Y. B.; Zhang, D. Q.; Zhang, Q. P.; Qiu, X.; Zhou, Y.; Poddar, S.; Fu, Y.; Zhu, Y. D.; Liao, J. F.; Shu, L. et al. High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat. Commun. 2023, 14, 4611.
Shoaib, M.; Zhang, X. H.; Wang, X. X.; Zhou, H.; Xu, T.; Wang, X.; Hu, X. L.; Liu, H. W.; Fan, X. P.; Zheng, W. H. et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 2017, 139, 15592–15595.
Huang, R.; Lin, D. H.; Liu, J. Y.; Wu, C. Y.; Wu, D.; Luo, L. B. Nanochannel-confined growth of crystallographically orientated perovskite nanowire arrays for polarization-sensitive photodetector application. Sci. China Mater. 2021, 64, 2497–2506.
Feng, J. G.; Gong, C.; Gao, H. F.; Wen, W.; Gong, Y. J.; Jiang, X. Y.; Zhang, B.; Wu, Y. C.; Wu, Y. S.; Fu, H. B. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 2018, 1, 404–410.
Cao, F. R.; Tian, W.; Wang, M.; Cao, H. P.; Li, L. Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv. Funct. Mater. 2019, 29, 1901280.
Wang, M.; Tian, W.; Cao, F. R.; Wang, M.; Li, L. Flexible and self-powered lateral photodetector based on inorganic perovskite CsPbI3-CsPbBr3 heterojunction nanowire array. Adv. Funct. Mater. 2020, 30, 1909771.
Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282.
Long, Z. H.; Qiu, X.; Chan, C. L. J.; Sun, Z. B.; Yuan, Z. N.; Poddar, S.; Zhang, Y. T.; Ding, Y. C.; Gu, L. L.; Zhou, Y. et al. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 2023, 14, 1972.
Lu, X. Y.; Li, J. Y.; Zhang, Y. C.; Zhang, L.; Chen, H. Y.; Zou, Y. S.; Zeng, H. B. Template-confined oriented perovskite nanowire arrays enable polarization detection and imaging. ACS Appl. Mater. Interfaces 2024, 16, 24976–24986.
Duijnstee, E. A.; Ball, J. M.; Le Corre, V. M.; Koster, L. J. A.; Snaith, H. J.; Lim, J. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 2020, 5, 376–384.
Sajedi Alvar, M.; Blom, P. W. M.; Wetzelaer, G. J. A. H. Space-charge-limited electron and hole currents in hybrid organic–inorganic perovskites. Nat. Commun. 2020, 11, 4023.
Le Corre, V. M.; Duijnstee, E. A.; El Tambouli, O.; Ball, J. M.; Snaith, H. J.; Lim, J.; Koster, L. J. A. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 2021, 6, 1087–1094.
Xiong, Y. T.; Xu, X. Z.; Chen, B.; Xu, X. B. Highly crystalized MAPbX3 perovskite triangular nanowire arrays for optoelectronic applications. Adv. Mater. 2024, 36, 2310427.
Sun, S. Q.; Lu, M.; Lu, P.; Li, X.; Zhang, F. J.; Wu, Z. N.; Wang, T. S.; Yan, F. P.; Li, T.; Feng, T. et al. Modulation of nucleation and growth kinetics of perovskite nanocrystals enables efficient and spectrally stable pure-red light-emitting diodes. Nano Lett. 2024, 24, 5631–5638.
Wang, S. H.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y. B. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2017, 2, 16195.
Wu, D. J.; Xu, Y. C.; Zhou, H.; Feng, X.; Zhang, J. Q.; Pan, X. Y.; Gao, Z.; Wang, R.; Ma, G. K.; Tao, L. et al. Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 h. InfoMat 2022, 4, e12320.
Tong, G. Q.; Jiang, M. W.; Son, D. Y.; Qiu, L. B.; Liu, Z. H.; Ono, L. K.; Qi, Y. B. Inverse growth of large-grain-size and stable inorganic perovskite micronanowire photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 14185–14194.
Li, L.; Wu, P. C.; Fang, X. S.; Zhai, T. Y.; Dai, L.; Liao, M. Y.; Koide, Y. S.; Wang, H. Q.; Bando, Y.; Golberg, D. Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 2010, 29, 3161–3165.
Wang, X. X.; Shoaib, M.; Wang, X.; Zhang, X. H.; He, M.; Luo, Z. Y.; Zheng, W. H.; Li, H. L.; Yang, T. F.; Zhu, X. L. et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nano 2018, 12, 6170–6178.
Oksenberg, E.; Sanders, E.; Popovitz-Biro, R.; Houben, L.; Joselevich, E. Surface-guided CsPbBr3 perovskite nanowires on flat and faceted sapphire with size-dependent photoluminescence and fast photoconductive response. Nano Lett. 2018, 18, 424–433.
Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713–9721.
Liu, Y. T.; Lu, H. Z.; Niu, J. X.; Zhang, H. T.; Lou, S. T.; Gao, C. L.; Zhan, Y. Q.; Zhang, X. L.; Jin, Q. Y.; Zheng, L. R. Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films. AIP Adv. 2018, 8, 095108.
Chen, G. S.; Feng, J. G.; Gao, H. F.; Zhao, Y. J.; Pi, Y. Y.; Jiang, X. Y.; Wu, Y. C.; Jiang, L. Stable α‐CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors. Adv. Funct. Mater. 2019, 29, 1808741.
Tsivion, D.; Schvartzman, M.; Popovitz-Biro, R.; von Huth, P.; Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 2011, 333, 1003–1007.
Xu, J. Y.; Rechav, K.; Popovitz-Biro, R.; Nevo, I.; Feldman, Y.; Joselevich, E. High-gain 200 ns photodetectors from self-aligned CdS–CdSe core–shell nanowalls. Adv. Mater. 2018, 30, 1800413.
Song, J.; Wang, X. Y.; Liao, J. H.; Zhou, W.; Song, J. X.; Zhao, Z. H.; Zhang, L. Y.; Joselevich, E.; Xu, J. Y. Horizontally-oriented growth of organic crystalline nanowires on polymer films for in- situ flexible photodetectors with vis–NIR response and high bending stability. Adv. Funct. Mater. 2023, 33, 2213888.
Liu, H. Y.; Zhou, W.; Chen, X. T.; Huang, P. Y.; Wang, X. Y.; Zhou, G. F.; Xu, J. Y. Replicating CD nanogrooves onto PDMS to guide nanowire growth for monolithic flexible photodetectors with high bending-stable UV–vis–NIR photoresponse. Adv. Sci. 2024, 11, 2403870.
Wang, X. Y.; Luo, Y. H.; Liao, J. H.; Joselevich, E.; Xu, J. Y. Selective-area growth of aligned organic semiconductor nanowires and their device integration. Adv. Funct. Mater. 2024, 34, 2308708.
Xu, J. Y. Graphoepitaxially side-by-side nanofins along atomic terraces for enhancement-mode FinFETs with 108 on/off ratio. Adv. Funct. Mater. 2024, 34, 2400980.
Li, B.; Zhang, Y. N.; Fu, L.; Yu, T.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076.
Niu, Y. J.; He, D. C.; Zhang, Z. G.; Zhu, J.; Gavin, T.; Falaras, P.; Hu, L. H. Improved crystallinity and self-healing effects in perovskite solar cells via functional incorporation of polyvinylpyrrolidone. J. Energy Chem. 2022, 68, 12–18.
Zhou, Y. H.; Fang, T.; Liu, G. Y.; Xiang, H. Y.; Yang, L. X.; Li, Y.; Wang, R.; Yan, D. N.; Dong, Y. H.; Cai, B. et al. Perovskite anion exchange: A microdynamics model and a polar adsorption strategy for precise control of luminescence color. Adv. Funct. Mater. 2021, 31, 2106871.
Jiang, J. Y.; Zhang, S.; Shan, Q. S.; Yang, L. X.; Ren, J.; Wang, Y. J.; Jeon, S.; Xiang, H. Y.; Zeng, H. B. High-color-rendition white QLEDs by balancing red, green and blue centres in eco-friendly ZnCuGaS: In@ZnS quantum dots. Adv. Mater. 2024, 36, 2304772.
Abdelmageed, G.; Jewell, L.; Hellier, K.; Seymour, L.; Luo, B. B.; Bridges, F.; Zhang, J. Z.; Carter, S. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 2016, 109, 233905.
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.
Gao, L.; Zeng, K.; Guo, J. S.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y. S.; Song, H. S. et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 2016, 16, 7446–7454.
Bonadio, A.; Sabino, F. P.; Freitas, A. L. M.; Felez, M. R.; Dalpian, G. M.; Souza, J. A. Comparing the cubic and tetragonal phases of MAPbI3 at room temperature. Inorg. Chem. 2023, 62, 7533–7544.
Wu, D. J.; Zhou, H.; Song, Z. H.; Zheng, M.; Liu, R. H.; Pan, X. Y.; Wan, H. Z.; Zhang, J.; Wang, H.; Li, X. M. et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano 2020, 14, 2777–2787.
Pham, P. V.; Bodepudi, S. C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. F. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514–6613.
Zhang, L. Y.; Wang, X. Y.; Zhou, W.; Wang, H.; Song, J. X.; Zhao, Z. H.; Liao, J. H.; Song, J.; Li, Y. J.; Xu, J. Y. Fast UV–Vis–NIR photoresponse of self-oriented F16CuPc nanoribbons. Nano Res. 2023, 16, 9561–9568.
Lim, S.; Ha, M.; Lee, Y.; Ko, H. Large-area, solution-processed, hierarchical MAPbI3 nanoribbon arrays for self-powered flexible photodetectors. Adv. Opt. Mater. 2018, 6, 1800615.
Yang, Y.; Yan, Y.; Yang, M. J.; Choi, S.; Zhu, K.; Luther, J. M.; Beard, M. C. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 2015, 6, 7961.
Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.
Wu, R. J.; Wu, K. T.; Nian, G. H.; Chou, W. Y.; Cheng, H. L. Preparation and characterization of low-dimensional MAPbI3 perovskite nanowires with enhanced photoluminescence and photoresponsive properties by incorporating PEAI. J. Phys. Chem. Solids 2022, 170, 110931.
Chen, Z.; Dong, L. M.; Tang, H. C.; Yu, Y.; Ye, L.; Zang, J. F. Direct synthesis of cubic phase CsPbI3 nanowires. CrystEngComm 2019, 21, 1389–1396.
Chang, S. H.; Huang, W. C.; Chen, C. C.; Chen, S. H.; Wu, C. G. Effects of anti-solvent (iodobenzene) volume on the formation of CH3NH3PbI3 thin films and their application in photovoltaic cells. Appl. Surf. Sci. 2018, 445, 24–29.
Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.
Adhyaksa, G. W. P. Understanding the impacts of grain size variation, distribution, and recombination losses in halide perovskites: A generalized semi-analytical model from thin-film to photovoltaics. Energy Technol. 2022, 10, 2200011.
Chen, X. T.; Mao, W. L.; Zhou, W.; Huang, P. Y.; Liu, H. Y.; Wang, X. Y.; Liang, Z. H.; Yang, Q. M.; Chen, Y. B.; Zhou, G. F. et al. In-situ fabricated transparent flexible nanowire device with wavelength-regulated dual-function of photodetector and photonic synapse. ACS Appl. Mater. Interfaces 2024, 16, 57512–57523.
Liang, F. X.; Wang, J. Z.; Zhang, Z. X.; Wang, Y. Y.; Gao, Y.; Luo, L. B. Broadband, ultrafast, self-driven photodetector based on Cs-doped FAPbI3 perovskite thin film. Adv. Opt. Mater. 2017, 5, 1700654.
Sun, B.; Xi, S.; Liu, Z. Y.; Liu, X. Y.; Wang, Z. Y.; Tan, X. H.; Shi, T. L.; Zhou, J. X.; Liao, G. L. Sensitive, fast, and stable photodetector based on perovskite/MoS2 hybrid film. Appl. Surf. Sci. 2019, 493, 389–395.
Cao, D. L.; Li, W. B.; Zhang, X.; Wan, L.; Guo, Z. G.; Wang, X. B.; Eder, D.; Wang, S. M. Current state-of-the-art characterization methods for probing defect passivation towards efficient perovskite solar cells. J. Mater. Chem. A 2022, 10, 19278–19303.
Zhu, H. W.; Zhang, F.; Xiao, Y.; Wang, S. R.; Li, X. G. Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J. Mater. Chem. A 2018, 6, 4971–4980.
Yan, H.; Li, Y.; Qin, J. K.; Hu, P. A.; Zhen, L.; Xu, C. Y. Charge transport behavior and ultrasensitive photoresponse performance of exfoliated F16CuPc nanoflakes. Adv. Opt. Mater. 2019, 7, 1901097.
Tang, Q.; Li, L.; Song, Y.; Liu, Y.; Li, H.; Xu, W.; Liu, Y.; Hu, W.; Zhu, D. Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater. 2007, 19, 2624–2628.
Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.
Meng, X. H.; Du, Y. H.; Wu, W. B.; Joseph, N. B.; Deng, X.; Wang, J. J.; Ma, J. W.; Shi, Z. P.; Liu, B. L.; Ma, Y. J. et al. Giant superlinear power dependence of photocurrent based on layered Ta2NiS5 photodetector. Adv. Sci. 2023, 10, 2300413.
Chen, J. W.; Li, L.; Gong, P. H.; Zhang, H. L.; Yin, S. Q.; Li, M.; Wu, L. F.; Gao, W. S.; Long, M. S.; Shan, L. et al. A submicrosecond-response ultraviolet–visible–near-infrared broadband photodetector based on 2D tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754.
Bube, R. H. Photoconductivity of the sulfide, selenide, and telluride of zinc or cadmium. Proc. IRE 1955, 43, 1836–1850.
Li, L.; Chen, H. Y.; Fang, Z. M.; Meng, X. Y.; Zuo, C. T.; Lv, M. L.; Tian, Y. Z.; Fang, Y.; Xiao, Z.; Shan, C. X. et al. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 2020, 32, 1907257.
Lin, C. N.; Lu, Y. J.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Sun, J. L.; Dong, L.; Zhong, F.; Hu, W. D.; Shan, C. X. Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018, 6, 1800068.
Cen, G. B.; Lv, Y. B.; Yuan, Y.; Yan, G. H.; Ji, Z.; Zhao, C. X.; Mai, W. J. High-performance ultraviolet photodetectors based on MAPbCl3 perovskites for visible-light-insensitive defect detection. J. Mater. Chem. C 2023, 11, 9341–9347.