Electrocatalytic nitrate reduction reaction (NO3−RR) and its coupling with CO2 could provide new sustainable pathways for the synthesis of ammonia and urea, respectively. However, their practical applications are hindered by the lack of catalysts with satisfied Faraday efficiency and yield. Herein, we report self-supported electrochemically reconstituted Sn/Cu2O bifunctional catalysts for the efficient synthesis of ammonia and urea. In the NO3−RR, Sn/Cu2O-β catalysts electrodeposited for 800 s provided an excellent ammonia yield of 0.496 mmol·h−1·cm−2 and Faraday efficiency of 98.5%. Besides, Sn/Cu2O-α catalysts electrodeposited for 400 s achieved the maximum Faraday efficiency of 13.5% and outstanding urea yield of 32.35 μmol·h−1·cm−2 in C–N coupling. Comprehensive analyses confirm that bi-selectivity to ammonia and urea synthesis could be achieved by modulating the chemical state of Cu in Sn/Cu2O catalysts, these results are superior to most reported transition metal-based catalysts in synthesis of urea and/or ammonia. In situ Fourier transform infrared (FTIR) spectroscopy revealed that *CONH2 intermediates are essential for urea synthesis. This work will provide a feasible strategy for the development of bifunctional electrocatalysts for efficient ammonia and urea synthesis.
Huan, Y. F.; Jiang, Y. Z.; Li, L. H.; He, Y. Z.; Cheng, Q. Y.; Cao, Y. F.; Wang, M. F.; Yan, C. L.; Qian, T. Recent advances in electrocatalysts for sustainable electrosynthesis of ammonia and urea from ambient nitrite reduction and C–N coupling. ACS Materials Lett. 2023, 5, 3347–3363.
Jiang, Y. Z.; Wang, M. F.; Zhang, L. F.; Liu, S. S.; Cao, Y. F.; Qian, S. Y.; Cheng, Y.; Xu, X. N.; Yan, C. L.; Qian, T. Distorted spinel ferrite heterostructure triggered by alkaline earth metal substitution facilitates nitrogen localization and electrocatalytic reduction to ammonia. Chem. Eng. J. 2022, 450, 138226.
Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.
Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.
Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.
Ward, M. H.; Dekok, T. M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B. T.; VanDerslice, J. Workgroup report: Drinking-water nitrate and health-recent findings and research needs. Environ. Health Perspect. 2005, 113, 1607–1614.
Rogan, W. J.; Brady, M. T. Drinking water from private wells and risks to children. Pediatrics 2009, 123, e1123–e1137.
Gu, Z. X.; Zhang, Y. C.; Wei, X. L.; Duan, Z. Y.; Gong, Q. Y.; Luo, K. Intermediates regulation via electron-deficient Cu sites for selective nitrate-to-ammonia electroreduction. Adv. Mater. 2023, 35, 2303107.
Zhou, J. J.; Pan, F.; Yao, Q. F.; Zhu, Y. Q.; Ma, H. R.; Niu, J. F.; Xie, J. P. Achieving efficient and stable electrochemical nitrate removal by in-situ reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam. Appl. Catal. B: Environ. 2022, 317, 121811.
Chen, J.; Gu, M. Q.; Zhou, Y. F.; Wan, D. J.; He, Q. C.; Shi, Y. H.; Liu, Y. D. Efficient nitrate and perchlorate removal from aqueous solution via a novel electro-dialysis ion-exchange membrane bioreactor. Chem. Eng. J. 2022, 430, 132952.
Ali, T.; Muhammad, N.; Qian, Y. J.; Liu, S. S.; Wang, S.; Wang, M. F.; Qian, T.; Yan, C. L. Recent advances in material design and reactor engineering for electrocatalytic ambient nitrogen fixation. Mater. Chem. Front. 2022, 6, 843–879.
Gao, L. J.; Han, F.; Zhang, X. W.; Liu, B.; Fan, D. W.; Sun, X.; Zhang, Y. F.; Yan, L. G.; Wei, D. Simultaneous nitrate and dissolved organic matter removal from wastewater treatment plant effluent in a solid-phase denitrification biofilm reactor. Bioresour. Technol. 2020, 314, 123714.
He, D. P.; Li, Y. M.; Ooka, H.; Go, Y. K.; Jin, F. M.; Kim, S. H.; Nakamura, R. Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer. J. Am. Chem. Soc. 2018, 140, 2012–2015.
Liu, S. S.; Wang, M. F.; Qian, T.; Ji, H. Q.; Liu, J.; Yan, C. L. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.
Wei, X. X.; Liu, Y. Y.; Zhu, X. R.; Bo, S. W.; Xiao, L.; Chen, C.; Thuy Nga, T. T.; He, Y. Q.; Qiu, M. Y.; Xie, C. et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv. Mater. 2023, 35, 2300020.
Lan, R.; Tao, S. W.; Irvine, J. T. S. A direct urea fuel cell-power from fertiliser and waste. Energy Environ. Sci. 2010, 3, 438–441.
Yu, X.; Zeng, S. Q.; Li, L.; Yao, H.; Zheng, Y. N.; Guo, X. H. Synergistic coupling of CO2 and NO3− for efficient electrosynthesis of urea using oxygen vacancy-rich Ru-doped CeO2 nanorods. Sci. China Mater. 2024, 67, 1543–1550.
Zheng, Y. N.; Qin, M. X.; Yu, X.; Yao, H.; Zhang, W. H.; Xie, G.; Guo, X. H. Constructing Ru@C3N4/Cu tandem electrocatalyst with dual-active sites for enhanced nitrate electroreduction to ammonia. Small 2023, 19, 2302266.
Peng, X. Y.; Zeng, L. B.; Wang, D. S.; Liu, Z. B.; Li, Y.; Li, Z. J.; Yang, B.; Lei, L. C.; Dai, L. M.; Hou, Y. Electrochemical C–N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem. Soc. Rev. 2023, 52, 2193–2237.
Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.
Guo, D. X.; Wang, S.; Xu, J.; Zheng, W. J.; Wang, D. H. Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions. J. Energy Chem. 2022, 65, 448–468.
Zhang, S.; Wu, J. H.; Zheng, M. T.; Jin, X.; Shen, Z. H.; Li, Z. H.; Wang, Y. J.; Wang, Q. A.; Wang, X. B.; Wei, H. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.
Ma, J. H.; Zhang, Y. T.; Wang, B. W.; Jiang, Z. X.; Zhang, Q. Y.; Zhuo, S. F. Interfacial engineering of bimetallic Ni/Co-MOFs with H-substituted graphdiyne for ammonia electrosynthesis from nitrate. ACS Nano 2023, 17, 6687–6697.
Liu, X. W.; Kumar, P. V.; Chen, Q.; Zhao, L. J.; Ye, F. H.; Ma, X. Y.; Liu, D.; Chen, X. C.; Dai, L. M.; Hu, C. G. Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl. Catal. B: Environ. 2022, 316, 121618.
Meng, N. N.; Ma, X. M.; Wang, C. H.; Wang, Y. T.; Yang, R.; Shao, J.; Huang, Y. M.; Xu, Y.; Zhang, B.; Yu, Y. F. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 2022, 16, 9095–9104.
Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Mechanism of C–N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 2022, 13, 5471.
Cheng, X. S.; Shang, W. Z.; Li, Y. H.; Hu, J. W.; Guo, J. Y.; Cao, D. Q.; Zhang, N. T.; Zhang, S. L.; Song, S. C.; Liu, T. N. et al. Unveiling structural evolution of Fe single atom catalyst in nitrate reduction for enhanced electrocatalytic ammonia synthesis. Nano Res. 2024, 17, 6826–6832.
Jin, M.; Liu, J. F.; Zhang, X.; Zhang, S. B.; Li, W. Y.; Sun, D. D.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M. Heterostructure Cu3P-Ni2P/CP catalyst assembled membrane electrode for high-efficiency electrocatalytic nitrate to ammonia. Nano Res. 2024, 17, 4872–4881.
Wang, Y.; Xia, S.; Zhang, J. F.; Li, Z. Y.; Cai, R.; Yu, C. P.; Zhang, Y.; Wu, J. J.; Wu, Y. C. Spatial management of CO diffusion on tandem electrode promotes NH2 intermediate formation for efficient urea electrosynthesis. ACS Energy Lett. 2023, 8, 3373–3380.
Jiang, M. H.; Zhu, Q.; Song, X. M.; Gu, Y. M.; Zhang, P. B.; Li, C. Q.; Cui, J. X.; Ma, J.; Tie, Z. X.; Jin, Z. Batch-scale synthesis of nanoparticle-agminated three-dimensional porous Cu@Cu2O microspheres for highly selective electrocatalysis of nitrate to ammonia. Environ. Sci. Technol. 2022, 56, 10299–10307.
Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.
Ge, Z. X.; Wang, T. J.; Ding, Y.; Yin, S. B.; Li, F. M.; Chen, P.; Chen, Y. Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Adv. Energy Mater. 2022, 12, 2103916.
Lv, X. M.; Shang, L. M.; Zhou, S.; Li, S.; Wang, Y. H.; Wang, Z. Q.; Sham, T. K.; Peng, C.; Zheng, G. F. Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Adv. Energy Mater. 2020, 10, 2001987.
Yang, W. H.; Chang, Z. W.; Yu, X.; Wu, P.; Shen, R. X.; Wang, L. Z.; Cui, X. Z.; Shi, J. L. Cu-Co dual sites tandem synergistic effect boosting neutral low concentration nitrate electroreduction to ammonia. Adv. Sci. 2025, 2416386.
Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.
Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Timothy Kim, J. Y.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
Cerrón-Calle, G. A.; Fajardo, A. S.; Sánchez-Sánchez, C. M.; Garcia-Segura, S. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B: Environ. 2022, 302, 120844.
Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.
Yang, S.; Liu, Z. C.; An, H. Y.; Arnouts, S.; De Ruiter, J.; Rollier, F.; Bals, S.; Altantzis, T.; Figueiredo, M. C.; Filot, I. A. W. et al. Near-unity electrochemical CO2 to CO conversion over Sn-doped copper oxide nanoparticles. ACS Catal. 2022, 12, 15146–15156.
Wang, M.; Chen, H. M.; Wang, M.; Wang, J. X.; Tuo, Y. X.; Li, W. Z.; Zhou, S. S.; Kong, L. H.; Liu, G. B.; Jiang, L. H. et al. Tuning C1/C2 selectivity of CO2 electrochemical reduction over in-situ evolved CuO/SnO2 heterostructure. Angew. Chem., Int. Ed. 2023, 62, e202306456.
Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108.
Jiang, H. Y.; Fan, Z. Q.; Zhang, M. Z.; Guo, S. Y.; Li, L.; Yu, X. H.; Liu, Z. Y.; Wang, W.; Dong, H.; Zhong, M. Redox-stabilized Sn/SnO2 nanostructures for efficient and stable CO2 electroreduction to formate. ChemElectroChem 2023, 10, e202201164.
Ma, Y. J.; Wang, Q. Q.; Liu, L.; Yao, S. Y.; Wu, W. J.; Wang, Z. Y.; Lv, P.; Zheng, J. J.; Yu, K. H.; Wei, W. et al. Plasma-enabled ternary SnO2@Sn/nitrogen-doped graphene aerogel anode for sodium-ion batteries. ChemElectroChem 2020, 7, 1358–1364.
Du, F.; Cui, G. H.; Yang, B. L.; Zhang, D. S.; Song, R. F.; Li, Z. X. Ingenious design of one mixed-valence dual-net copper metal-organic framework for deriving Cu2O/CuO heterojunction with highly electrocatalytic performances from NO3− to NH3. J. Power Sources 2022, 543, 231832.
Wang, C. C.; Ye, F.; Shen, J. H.; Xue, K. H.; Zhu, Y. H.; Li, C. Z. In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 6680–6688.
Gao, Y.; Wang, R.; Li, Y. D.; Han, E. S.; Song, M. S.; Yang, Z. Y.; Guo, F.; He, Y. Z.; Yang, X. H. Regulating dynamic equilibrium of active hydrogen for super-efficient nitrate electroreduction to ammonia. Chem. Eng. J. 2023, 474, 145546.
Zhang, X. R.; Zhu, X. R.; Bo, S. W.; Chen, C.; Qiu, M. Y.; Wei, X. X.; He, N. H.; Xie, C.; Chen, W.; Zheng, J. Y. et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat. Commun. 2022, 13, 5337.
Wang, Y.; Wang, S.; Fu, Y. F.; Sang, J. Q.; Wei, P. F.; Li, R. T.; Gao, D. F.; Wang, G. X.; Bao, X. H. Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst. Nat. Commun. 2025, 16, 897.
Sun, M. M.; Wu, G. Z.; Jiang, J. D.; Yang, Y. D.; Du, A. J.; Dai, L.; Mao, X.; Qin, Q. Carbon-anchored molybdenum oxide nanoclusters as efficient catalysts for the electrosynthesis of ammonia and urea. Angew. Chem., Int. Ed. 2023, 62, e202301957.
Lv, C. D.; Zhong, L. X.; Liu, H. J.; Fang, Z. W.; Yan, C. S.; Chen, M. X.; Kong, Y.; Lee, C.; Liu, D. B.; Li, S. Z. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868–876.
Bat-Erdene, M.; Xu, G. R.; Batmunkh, M.; Bati, A. S. R.; White, J. J.; Nine, M. J.; Losic, D.; Chen, Y.; Wang, Y.; Ma, T. Y. et al. Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 4735–4739.