Antimony sulfide (Sb2S3) thin film have a suitable band gap (1.73 eV) and high absorption coefficient, indicating potential prospects in indoor photovoltaics. The open-circuit voltage (VOC) attenuation under indoor weak light limits the performance and application, which is affected by the heterojunction interface quality. Hence, we propose a hole transport layer free Sb2S3 indoor photovoltaic cell using Li-doped TiO2 as the electron transport layer to overcome weak-light VOC loss. The Li-doped TiO2 films prepared by spray pyrolysis LiCl additive precursor reveal higher surface potentials, enhancing electron collections. The doped interface also promoted subsequent grain growth of Sb2S3 thin film. The champion device, configured as FTO/TiO2:Li/Sb2S3/Au, achieves an efficiency of 6.12% with an optimal Li doping ratio of 8% in the TiO2 layer. The Li introduction at the junction interface suppresses the photocarrier recombinations under indoor light, thus improving device performance. The indoor power conversion efficiency of the Li-TiO2 based Sb2S3 device reaches 12.7% under the irradiation of 1000-lux LED, showing 48% improvement compared with the undoped device. The Li-doped TiO2/Sb2S3 photovoltaic device demonstrates significant advantages, particularly in cold and monochromatic light conditions, opening new prospects for indoor application.
Chen, J. W.; Li, G. Y.; Xu, Z. H.; Xu, C. C.; Naveed, F.; Liu, B.; Zhang, Y.; Zhou, R.; Chen, C.; Wang, M. T. et al. Recent advances and prospects of solution-processed efficient Sb2S3 solar cells. Adv. Funct. Mater. 2024, 34, 2313676.
Wang, X. M.; Tang, R. F.; Wu, C. Y.; Zhu, C. F.; Chen, T. Development of antimony sulfide-selenide Sb2(S, Se)3-based solar cells. J. Energy Chem. 2018, 27, 713–721.
Venkateswararao, A.; Ho, J. K. W.; So, S. K.; Liu, S. W.; Wong, K. T. Device characteristics and material developments of indoor photovoltaic devices. Mater. Sci. Eng. R: Rep. 2020, 139, 100517.
Chen, X.; Shu, X. X.; Zhou, J. C.; Wan, L.; Xiao, P.; Fu, Y. C.; Ye, J. Z.; Huang, Y. T.; Yan, B.; Xue, D. J. et al. Additive engineering for Sb2S3 indoor photovoltaics with efficiency exceeding 17%. Light: Sci. Appl. 2024, 13, 281.
Saha, A.; Haque, K. A.; Baten, M. Z. Performance evaluation of single-junction indoor photovoltaic devices for different absorber bandgaps under spectrally varying white light-emitting diodes. IEEE J. Photovolt. 2020, 10, 539–545.
Guo, H. F.; Huang, S.; Zhu, H.; Zhang, T. Y.; Geng, K. J.; Jiang, S.; Gu, D.; Su, J.; Lu, X. L.; Zhang, H. et al. Enhancement in the efficiency of Sb2Se3 solar cells by triple function of lithium hydroxide modified at the back contact interface. Adv. Sci. 2023, 10, 2304246.
Yang, J. J.; Wang, H. L.; Che, B.; Huang, L.; Gao, J. X.; Cai, Z. Y.; Zhu, C. F.; Tang, R. F.; Chen, T. Manipulating the intrinsic defect of MnS by surface sulfidation for inverted Sb2(S,Se)3 planar-heterojunction solar cells. Solar RRL 2024, 8, 2400006.
Mo, A. M.; Feng, Y.; Yang, B. X.; Dang, W.; Liang, X. Y.; Cao, W. J.; Guo, Y. N.; Chen, T.; Li, Z. Q. Controlling unintentional defects enables high-efficient antimony selenide solar cells. Adv. Funct. Mater. 2024, 34, 2316292.
Li, K.; Cai, Z. Y.; Yang, J. J.; Wang, H. L.; Zhang, L. J.; Tang, R. F.; Zhu, C. F.; Chen, T. Molecular beam epitaxy deposition of in situ O-doped CdS films for highly efficient Sb2(S,Se)3 solar cells. Adv. Funct. Mater. 2023, 33, 2304141.
Lin, J. H.; Mahmood, A.; Chen, G. J.; Ahmad, N.; Chen, M. D.; Fan, P.; Chen, S.; Tang, R.; Liang, G. X. Crystallographic orientation control and defect passivation for high-efficient antimony selenide thin-film solar cells. Mater. Today Phys. 2022, 27, 100772.
Lin, J. H.; Chen, G. J.; Ahmad, N.; Ishaq, M.; Chen, S.; Su, Z. H.; Fan, P.; Zhang, X. H.; Zhang, Y.; Liang, G. X. Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells. J Energy Chem 2023, 80, 256–264.
Wang, S. Y.; Zhao, Y. Q.; Che, B.; Li, C.; Chen, X. L.; Tang, R. F.; Gong, J. B.; Wang, X. M.; Chen, G. L.; Chen, T. et al. A novel multi-sulfur source collaborative chemical bath deposition technology enables 8%-efficiency Sb2S3 planar solar cells. Adv. Mater. 2022, 34, 2206242.
Deng, H.; Chen, S. W.; Ishaq, M.; Cheng, Y. S.; Sun, Q. Z.; Lin, X.; Zheng, Q.; Zhang, C. X.; Cheng, S. Y. Efficient all-inorganic Sb2S3 solar cells with matched energy levels using Sb2Se3 as hole transport layers. Solar RRL 2022, 6, 2101017.
Deng, H.; Zeng, Y. Y.; Ishaq, M.; Yuan, S. J.; Zhang, H.; Yang, X. K.; Hou, M. M.; Farooq, U.; Huang, J. L.; Sun, K. W. et al. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Adv. Funct. Mater. 2019, 29, 1901720.
Li, K. H.; Lu, Y.; Ke, X. X.; Li, S.; Lu, S. C.; Wang, C.; Wang, S. Y.; Chen, C.; Tang, J. Over 7% efficiency of Sb2(S,Se)3 solar cells via V-shaped bandgap engineering. Solar RRL 2020, 4, 2000220.
Zhang, L. J.; Lian, W. T.; Zhao, X. C.; Yin, Y. W.; Chen, T.; Zhu, C. F. Sb2S3 seed-mediated growth of low-defect Sb2S3 on a TiO2 substrate for efficient solar cells. ACS Appl. Energy Mater. 2020, 3, 12417–12422.
Liu, X. N.; Cai, Z. Y.; Wan, L.; Xiao, P.; Che, B.; Yang, J. J.; Niu, H. H.; Wang, H.; Zhu, J.; Huang, Y. T. et al. Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage. Adv. Mater. 2024, 36, 2305841.
Li, H.; Yang, G. Q.; Hu, X. Y.; Hu, Y. H.; Zeng, R. B.; Cai, J. R.; Yao, L. Q.; Lin, L. M.; Cai, L. P.; Chen, G. L. Sputtering of molybdenum as a promising back electrode candidate for superstrate structured Sb2S3 solar cells. Adv. Sci. 2023, 10, 2303414.
Mathews, I.; Kantareddy, S. N.; Buonassisi, T.; Peters, I. M. Technology and market perspective for indoor photovoltaic cells. Joule 2019, 3, 1415–1426.
Farhana, M. A.; Manjceevan, A.; Bandara, J. Recent advances and new research trends in Sb2S3 thin film based solar cells. J. Sci.: Adv. Mater. Devices 2023, 8, 100533.
You, F. G.; Chen, S. W.; Ma, T. J.; Xiao, F.; Chen, C.; Hsu, H. Y.; Song, H. S.; Tang, J. Reactive ion etching activating TiO2 substrate for planar heterojunction Sb2S3 solar cells with 6.06% efficiency. Energy Technol. 2022, 10, 2200940.
Lin, W. W.; Guo, W. T.; Yao, L. Q.; Li, J. M.; Lin, L. M.; Zhang, J. M.; Chen, S. Y.; Chen, G. L. Zn(O,S) buffer layer for in situ hydrothermal Sb2S3 planar solar cells. ACS Appl. Mater. Interfaces 2021, 13, 45726–45735.
Moshfeghi, E.; Entezari, M. H. Enhancement of the photovoltaic performance of perovskite solar cells via sono-synthesis of Al-doped TiO2 as the electron transport layer. Int. J. Energy Res. 2022, 46, 23465–23479.
Jagtap, C.; Kadam, V.; Jadkar, S.; Patole, S.; Pathan, H. Improvement in photovoltaic performance of dye-sensitized solar cell using ruthenium as dopant into titania. J. Mater. Sci.: Mater. Electron. 2023, 34, 1935.
Nwankwo, U.; Nkele, A. C.; Arendse, C. J.; Ozoemena, K. I.; Ekwealor, A. B. C.; Jose, R.; Maaza, M.; Ezema, F. I. Effects of p-type-metal-doping (Ba, Cs, and Y) of the compact-TiO2 electron transporting layer on the photovoltaic properties of n-i-p perovskite solar cells. J. Mater. Sci.: Mater. Electron. 2023, 34, 1891.
Ishaq, M.; Chen, S.; Farooq, U.; Azam, M.; Deng, H.; Su, Z. H.; Zheng, Z. H.; Fan, P.; Song, H. S.; Liang, G. X. High open-circuit voltage in full-inorganic Sb2S3 solar cell via modified Zn-doped TiO2 electron transport layer. Solar RRL 2020, 4, 2000551.
Zeng, Y. Y.; Huang, J. L.; Li, J. J.; Sun, K. W.; Shah, U. A.; Deng, H.; Zhang, X. Y.; Sha, C. H.; Qian, C.; Song, H. S. et al. Comparative study of TiO2 and CdS as the electron transport layer for Sb2S3 solar cells. Solar RRL 2022, 6, 2200435.
Feng, M. J.; Zuo, C. T.; Xue, D. J.; Liu, X. H.; Ding, L. M. Wide-bandgap perovskites for indoor photovoltaics. Sci. Bull. 2021, 66, 2047–2049.
Xie, L.; Song, W.; Ge, J. F.; Tang, B. C.; Zhang, X. L.; Wu, T.; Ge, Z. Y. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy 2021, 82, 105770.
Gao, H. H.; Li, J. Y.; Peng, X. Q.; Huang, Y. Q.; Zhao, Q.; Wang, H. L.; Wu, T.; Sheng, S. W.; Tang, R. F.; Chen, T. Band gap adjustable antimony selenosulfide indoor photovoltaics with 20% efficiency. Solar RRL 2024, 8, 2400389.
Cao, R.; Lv, K.; Shi, C. W.; Wang, Y. Q.; Ye, C. S.; Guo, F. L.; Hu, G. J.; Chen, W. C. Efficient Sb2S3 and low Se content Sb2Se y S3– y indoor photovoltaics. ACS Appl. Mater. Interfaces 2024, 16, 42513–42521.
Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.
Torres-Ceron, D. A.; Amaya-Roncancio, S.; Riva, J. S.; Vargas-Eudor, A.; Escobar-Rincon, D.; Restrepo-Parra, E. Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study. Surf. Coat. Technol. 2021, 421, 127437.
Lai, L.; Jin, S.; Hu, H. Z.; Wang, S. L.; Wu, C.; Wu, F. M.; Guo, D. Y. Modulation of bipolar ultraviolet current in TiO2 nanofilms for switching logic devices via Ti valence state control. ACS Appl. Nano Mater. 2023, 6, 23557–23564.
Guo, H. F.; Zhu, H.; Geng, K. J.; Zhang, T. Y.; Huang, S.; Yang, Y. S.; Fang, X.; Zhou, X. S.; Su, J.; Zhang, H. et al. Defect control for high efficiency antimony selenosulfide solar cells by interface engineering of buried monoatomic aluminum oxide layer. Chem. Eng. J. 2024, 487, 150499.
Swami, S. K.; Kumar, N.; Radu, D. R.; Cho, S. W.; Lee, J. Lithium Incorporation into TiO2 Photoanode for performance enhancement of dye-sensitized solar cells. ACS Appl. Energy Mater. 2023, 6, 8599–8606.
Sun, Q. Z.; Shi, C.; Xie, W. H.; Li, Y. F.; Zhang, C. X.; Wu, J. H.; Zheng, Q.; Deng, H.; Cheng, S. Y. Defect synergistic regulations of Li&Na Co-doped flexible Cu2ZnSn(S,Se)4 solar cells achieving over 10% certified efficiency. Adv. Sci. 2023, 11, 2306740.
Deng, H.; Feng, X. X.; Zhu, Q. Q.; Liu, Y. H.; Wang, G. D.; Zhang, C. X.; Zheng, Q.; Wu, J. H.; Wang, W. H.; Cheng, S. Y. 8.2%-efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy. Sci. China Mater. 2024, 67, 3666–3674.
Zheng, J. Z.; Liu, C.; Zhang, L.; Chen, Y. J.; Bao, F. X.; Liu, J.; Zhu, H. B.; Shen, K.; Mai, Y. H. Enhanced hydrothermal heterogeneous deposition with surfactant additives for efficient Sb2S3 solar cells. Chem. Eng. J. 2022, 446, 136474.