PDF (17 MB)
Collect
Submit Manuscript
Research Article | Open Access

Rapid preparation of graphene-skinned alumina fiber fabric and its electromagnetic interference shielding application

Kangyi Zheng1,2Chaojie Yu2,3Wenjuan Li2,4Fushun liang2,5Longfei Liu2,6Ruojuan Liu4Hao Yuan4Yuyao Yang2,4Fan Yang2,5Shuting Cheng7Wenjing Jiang2,8Qingxu Su2,4Mengxiong Liu2,4Yulin Han2,6Xiaobai Wang2,8 ()Xiaoli Sun2 ()Yue Qi2 ()Zhongfan Liu2,4 ()
College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
Beijing Graphene Institute (BGI), Beijing 100095, China
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
School of Population and Health, Renmin University of China, Beijing 100872, China
Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
Show Author Information

Graphical Abstract

View original image Download original image
In this study, graphene was rapidly prepared on commercial alumina fiber fabric (AFF) using propane (C3H8) as the carbon source. Compared to traditional carbonsources like methane (CH4) and ethylene (C2H4), the growth and nucleation rates of graphene synthesized from C3H8 were significantly enhanced.

Abstract

Direct growth of graphene on dielectric or insulating materials via chemical vapor deposition (CVD) offers a novel, transfer-free approach for various applications. However, challenges remain in growing graphene on non-catalytic substrates. In particular, the low growth rate of graphene remains a significant barrier to its large-scale production. In this study, propane (C3H8) was used as the carbon source to prepare graphene on commercial alumina fiber fabric (AFF) via CVD, resulting in the synthesis of a novel material: graphene-skinned alumina fiber fabric (GAFF). Through comparative analysis of the graphene growth behaviors using C3H8 and traditional carbon sources (CH4 and C2H4) on AFF, the growth mechanism of C3H8 was elucidated. The pyrolysis of C3H8 generates the unique carbon species C3H, which exhibits distinct advantages in terms of migration, nucleation, and growth on AFF. Graphene nucleation density using C3H8 was found to be 160 times higher than that of CH4 and 50 times higher than C2H4. The resulting GAFF exhibits a wide tunable electrical conductivity range (1 to 7000 Ω·sq−1), high tensile strength (> 170 MPa), lightweight properties, flexibility, and a hierarchical macrostructure. These characteristics make GAFF a promising candidate for various applications, including electromagnetic interference (EMI) shielding.

Electronic Supplementary Material

Download File(s)
7330_ESM.pdf (2.7 MB)

References

[1]

Piccinini, E.; Fenoy, G. E.; Cantillo, A. L.; Allegretto, J. A.; Scotto, J.; Piccinini, J. M.; Marmisollé, W. A.; Azzaroni, O. Biofunctionalization of graphene-based FET sensors through heterobifunctional nanoscaffolds: Technology validation toward rapid COVID-19 diagnostics and monitoring. Adv. Mater. Interfaces 2022, 9, 2102526.

[2]

Nayak, P. K. Direct growth of graphene on insulator using liquid precursor via an intermediate nanostructured state carbon nanotube. Nanoscale Res. Lett. 2019, 14, 107.

[3]

Pawar, S.; Duadi, H.; Fixler, D. Recent advances in the spintronic application of carbon-based nanomaterials. Nanomaterials 2023, 13, 598.

[4]

Wu, D.; Wang, M. C.; Zeng, J. W.; Yao, J. Y.; Jia, C.; Zhang, H.; Li, J. T. Preparation and characterization of graphene from refined benzene extracted from low-rank coal: Based on the CVD technology. Molecules 2021, 26, 1900.

[5]

Zhan, L. L.; Wang, Y.; Chang, H. C.; Stehle, R.; Xu, J.; Gao, L. B.; Zhang, W. L.; Jia, Y.; Qing, F. Z.; Li, X. S. Preparation of ultra-smooth Cu surface for high-quality graphene synthesis. Nanoscale Res. Lett. 2018, 13, 340.

[6]

Kashani, H.; Ito, Y.; Han, J. H.; Liu, P.; Chen, M. W. Extraordinary tensile strength and ductility of scalable nanoporous graphene. Sci. Adv. 2019, 5, eaat6951.

[7]

Wang, K.; Sun, X. C.; Cheng, S. T.; Cheng, Y.; Huang, K. W.; Liu, R. J.; Yuan, H.; Li, W. J.; Liang, F. S.; Yang, Y. Y. et al. Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat. Commun. 2024, 15, 5040.

[8]

Li, W. J.; Liang, F. S.; Sun, X. C.; Zheng, K. Y.; Liu, R. J.; Yuan, H.; Cheng, S. T.; Wang, J. N.; Cheng, Y.; Huang, K. W. et al. Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat. Commun. 2024, 15, 6825.

[9]

Grebenko, A. K.; Krasnikov, D. V.; Bubis, A. V.; Stolyarov, V. S.; Vyalikh, D. V.; Makarova, A. A.; Fedorov, A.; Aitkulova, A.; Alekseeva, A. A.; Gilshtein, E. et al. High-quality graphene using boudouard reaction. Adv. Sci. 2022, 9, 2200217.

[10]

Han, Y. R.; Park, B. J.; Eom, J. H.; Jella, V.; Ippili, S.; Pammi, S. V. N.; Choi, J. S.; Ha, H.; Choi, H.; Jeon, C. et al. Direct growth of highly conductive large-area stretchable graphene. Adv. Sci. 2021, 8, 2003697.

[11]

Fujita, J. I.; Hiyama, T.; Hirukawa, A.; Kondo, T.; Nakamura, J.; Ito, S. I.; Araki, R.; Ito, Y.; Takeguchi, M.; Pai, W. W. Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Sci. Rep. 2017, 7, 12371.

[12]

Saeed, M.; Alshammari, Y.; Majeed, S. A.; Al-Nasrallah, E. Chemical vapour deposition of graphene-synthesis, characterisation, and applications: A review. Molecules 2020, 25, 3856.

[13]

Li, N.; Zhen, Z.; Zhang, R. J.; Xu, Z. H.; Zheng, Z.; He, L. M. Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition. Sci. Rep. 2021, 11, 6007.

[14]

Zhang, Z. H.; Xu, X. Z.; Qiu, L.; Wang, S. X.; Wu, T. W.; Ding, F.; Peng, H. L.; Liu, K. H. The way towards ultrafast growth of single-crystal graphene on copper. Adv. Sci. 2017, 4, 1700087.

[15]

Luceño-Sánchez, J. A.; Maties, G.; Gonzalez-Arellano, C.; Diez-Pascual, A. M. Synthesis and characterization of graphene oxide derivatives via functionalization reaction with hexamethylene diisocyanate. Nanomaterials 2018, 8, 870.

[16]

Tang, S. J.; Wang, H. M.; Wang, H. S.; Sun, Q. J.; Zhang, X. Y.; Cong, C. X.; Xie, H.; Liu, X. Y.; Zhou, X. H.; Huang, F. Q. et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 2015, 6, 6499.

[17]

Panchal, V.; Yang, Y. F.; Cheng, G. J.; Hu, J. N.; Kruskopf, M.; Liu, C. I.; Rigosi, A. F.; Melios, C.; Walker, A. R. H.; Newell, D. B. et al. Confocal laser scanning microscopy for rapid optical characterization of graphene. Commun. Phys. 2018, 1, 83.

[18]

Akhtar, F.; Dabrowski, J.; Lukose, R.; Wenger, C.; Lukosius, M. Chemical vapor deposition growth of graphene on 200 mm Ge(110)/Si wafers and ab initio analysis of differences in growth mechanisms on Ge(110) and Ge(001). ACS Appl. Mater. Interfaces 2023, 15, 36966–36974.

[19]

Seo, D. H.; Pineda, S.; Woo, Y. C.; Xie, M.; Murdock, A. T.; Ang, E. Y. M.; Jiao, Y. L.; Park, M. J.; Lim, S. I.; Lawn, M. et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 2018, 9, 683.

[20]

Thodkar, K.; Gramm, F. Enhanced mobility in suspended chemical vapor-deposited graphene field-effect devices in ambient conditions. ACS Appl. Mater. Interfaces 2023, 15, 37756–37763.

[21]

Waduge, P.; Larkin, J.; Upmanyu, M.; Kar, S.; Wanunu, M. Programmed synthesis of freestanding graphene nanomembrane arrays. Small 2015, 11, 597–603.

[22]

Chen, H. W.; Yang, Y. R.; Liu, Q.; Cui, M. F.; Chen, X.; Fei, Z. Y.; Tao, Z. L.; Wang, M. H.; Qiao, X. A citric acid-assisted deposition strategy to synthesize mesoporous SiO2-confined highly dispersed LaMnO3 perovskite nanoparticles for n-butylamine catalytic oxidation. RSC Adv. 2019, 9, 8454–8462.

[23]

Sengar, S. K.; Mehta, B. R.; Kumar, R.; Singh, V. In-flight gas phase growth of metal/multi layer graphene core shell nanoparticles with controllable sizes. Sci. Rep. 2013, 3, 2814.

[24]

Xie, M. S.; Luo, H. C.; Liu, X. J.; Yin, C. C. Development and challenge of coal-based nanocarbon materials and their application in water treatment: A review. Discover Nano 2024, 19, 162.

[25]

Schaper, N.; Alameri, D.; Kim, Y.; Thomas, B.; McCormack, K.; Chan, M.; Divan, R.; Gosztola, D. J.; Liu, Y. Z.; Kuljanishvili, I. Controlled fabrication of quality ZnO NWs/CNTs and ZnO NWs/Gr heterostructures via direct two-step CVD method. Nanomaterials 2021, 11, 1836.

[26]

Zhang, H.; Zhang, Y. G.; Li, J.; Ma, Z. N. Advantages of structure and electrochemical properties of graphene prepared from tectonically deformed coal. ACS Omega 2023, 8, 25142–25154.

[27]

Rodríguez-Villanueva, S.; Mendoza, F.; Weiner, B. R.; Morell, G. Graphene film growth on silicon carbide by hot filament chemical vapor deposition. Nanomaterials 2022, 12, 3033.

[28]

Shearer, C. J.; Slattery, A. D.; Stapleton, A. J.; Shapter, J. G.; Gibson, C. T. Accurate thickness measurement of graphene. Nanotechnology 2016, 27, 125704.

[29]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[30]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[31]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[32]

Li, L.; Liu, X. L.; Wang, G.; Liu, Y. L.; Kang, W. M.; Deng, N. P.; Zhuang, X. P.; Zhou, X. H. Research progress of ultrafine alumina fiber prepared by sol-gel method: A review. Chem. Eng. J. 2021, 421, 127744.

[33]

Yuan, Q.; Yin, A. X.; Luo, C.; Sun, L. D.; Zhang, Y. W.; Duan, W. T.; Liu, H. C.; Yan, C. H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J. Am. Chem. Soc. 2008, 130, 3465–3472.

[34]

Chen, F. R.; Davis, J. G.; Fripiat, J. J. Aluminum coordination and Lewis acidity in transition aluminas. J. Catal. 1992, 133, 263–278.

[35]

Seok, J.; Phan, N. T. Y.; Kim, J. C.; Shin, H.; Choi, M. Catalytic synergy between Lewis acidic alumina and Pt in hydrodechlorination for plastic chemical recycling. J. Am. Chem. Soc. 2024, 146, 23881–23890.

[36]

Du, Z. P.; Wang, C. Y.; Zhang, R. H.; Wang, X. M.; Li, X. M. Applications of graphene and its derivatives in bone repair: Advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int. J. Nanomedicine 2020, 15, 7523–7551.

[37]

Shamshirgar, A. S.; Hernández, R. E. R.; Tewari, G. C.; Ivanov, R.; Mikli, V.; Karppinen, M.; Hussainova, I. Layered structure of alumina/graphene-augmented-inorganic-nanofibers with directional electrical conductivity. Carbon 2020, 167, 634–645.

[38]

Pitkänen, O.; Tolvanen, J.; Szenti, I.; Kukovecz, Á.; Hannu, J.; Jantunen, H.; Kordas, K. Lightweight hierarchical carbon nanocomposites with highly efficient and tunable electromagnetic interference shielding properties. ACS Appl. Mater. Interfaces 2019, 11, 19331–19338.

[39]

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

[40]

Mao, Q. Y.; Qiao, L.; Zheng, J. W.; Ying, Y.; Yu, J.; Li, W. C.; Che, S. L.; Cai, W. Injection molding and sintering of ZrO2 ceramic powder modified by a zirconate coupling agent. Materials 2022, 15, 7014.

[41]

Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

[42]

Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. W. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 2020, 4093732.

[43]

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

[44]

Deng, Y. L.; Chen, Y. Q.; Liu, W.; Wu, L. L.; Wang, Z.; Xiao, D.; Meng, D. C.; Jiang, X. G.; Liu, J. R.; Zeng, Z. H. et al. Transparent electromagnetic interference shielding materials using MXene. Carbon Energy 2024, 6, e593.

[45]

Chung, D. D. L. A perspective on electromagnetic interference shielding materials comprising exfoliated graphite. Carbon 2024, 216, 118569.

[46]

Xia, Y. X.; Gao, W. W.; Gao, C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv. Funct. Mater. 2022, 32, 2204591.

[47]

Liu, J.; Yu, M. Y.; Yu, Z. Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 2023, 66, 245–272.

[48]

Tian, J. H.; Xu, Y.; Yang, Y.; Zhao, Y. C.; Man, W.; Wang, J. G. Research on residual-current measurement system of substation considering magnetic shielding effect. Sensors 2024, 24, 632.

[49]

Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Plavec, R.; Dosoudil, R.; Gořalík, M.; Vilčáková, J.; Hudec, I. Mechanical, thermal, electrical characteristics and EMI absorption shielding effectiveness of rubber composites based on ferrite and carbon fillers. Polymers 2021, 13, 2937.

[50]

Sun, M. Y.; Wang, S.; Liang, Y. B.; Wang, C.; Zhang, Y. H.; Liu, H.; Zhang, Y.; Han, L. Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 2025, 17, 34.

[51]

Askari, M. B.; Salarizadeh, P.; Veisi, P.; Samiei, E.; Saeidfirozeh, H.; Moghadam, M. T. T.; Di Bartolomeo, A. Transition-metal dichalcogenides in electrochemical batteries and solar cells. Micromachines 2023, 14, 691.

[52]

Zheng, M. K.; Ma, X. G.; Hu, J. S.; Zhang, X. X.; Li, D.; Duan, W. Y. Novel recyclable BiOBr/Fe3O4/RGO composites with remarkable visible-light photocatalytic activity. RSC Adv. 2020, 10, 19961–19973.

[53]

Shamshirgar, A. S.; Álvarez, M. F.; del Campo, A.; Fernández, J. F.; Hernández, R. E. R.; Ivanov, R.; Rosen, J.; Hussainova, I. Versatile graphene-alumina nanofibers for microwave absorption and EMI shielding. Carbon 2023, 210, 118057.

[54]

Jia, W.; Zhou, L. R.; Jiang, M.; Du, J.; Zhang, M. Y.; Han, E. L.; Niu, H. Q.; Wu, D. Z. Fabrication of polyimide/graphene nanosheet composite fibers via microwave-assisted imidization strategy. RSC Adv. 2021, 11, 32647–32653.

[55]

Song, H.; Kim, B. G.; Kim, Y. S.; Bae, Y. S.; Kim, J.; Yoo, Y. Synergistic effects of various ceramic fillers on thermally conductive polyimide composite films and their model predictions. Polymers 2019, 11, 484.

[56]

Vasquez, S.; Angeli, M. A. C.; Polo, A.; Costantini, A.; Petrelli, M.; Avancini, E.; Di Cagno, R.; Gobbetti, M.; Gaiardo, A.; Valt, M. et al. In vitro gastrointestinal gas monitoring with carbon nanotube sensors. Sci. Rep. 2024, 14, 825.

[57]

Lan, Z. X.; Li, C. Y.; Yu, Y. L.; Wei, J. Colorless semi-alicyclic copolyimides with high thermal stability and solubility. Polymers 2019, 11, 1319.

[58]

Li, Y. H.; Zhu, Y. F.; Jiang, G. P.; Cano, Z. P.; Yang, J.; Wang, J.; Liu, J. L.; Chen, X. H.; Chen, Z. W. Boosting the heat dissipation performance of graphene/polyimide flexible carbon film via enhanced through-plane conductivity of 3D hybridized structure. Small 2020, 16, 1903315.

[59]

Lee, C. C.; Shih, R. C.; Huang, P. C.; Tseng, S. F. Adhesion enhancement of conductive graphene/PI substrates through a vacuum plasma system. Surf. Coat. Technol. 2020, 388, 125601.

[60]

Ma, L. R.; Wang, Y. X.; Wang, Y. Y.; Wang, C. G.; Gao, X. P. Graphene induced carbonization of polyimide films to prepared flexible carbon films with improving-thermal conductivity. Ceram. Int. 2020, 46, 3332–3338.

Nano Research
Article number: 94907330
Cite this article:
Zheng K, Yu C, Li W, et al. Rapid preparation of graphene-skinned alumina fiber fabric and its electromagnetic interference shielding application. Nano Research, 2025, 18(5): 94907330. https://doi.org/10.26599/NR.2025.94907330
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return