Direct growth of graphene on dielectric or insulating materials via chemical vapor deposition (CVD) offers a novel, transfer-free approach for various applications. However, challenges remain in growing graphene on non-catalytic substrates. In particular, the low growth rate of graphene remains a significant barrier to its large-scale production. In this study, propane (C3H8) was used as the carbon source to prepare graphene on commercial alumina fiber fabric (AFF) via CVD, resulting in the synthesis of a novel material: graphene-skinned alumina fiber fabric (GAFF). Through comparative analysis of the graphene growth behaviors using C3H8 and traditional carbon sources (CH4 and C2H4) on AFF, the growth mechanism of C3H8 was elucidated. The pyrolysis of C3H8 generates the unique carbon species C3H, which exhibits distinct advantages in terms of migration, nucleation, and growth on AFF. Graphene nucleation density using C3H8 was found to be 160 times higher than that of CH4 and 50 times higher than C2H4. The resulting GAFF exhibits a wide tunable electrical conductivity range (1 to 7000 Ω·sq−1), high tensile strength (> 170 MPa), lightweight properties, flexibility, and a hierarchical macrostructure. These characteristics make GAFF a promising candidate for various applications, including electromagnetic interference (EMI) shielding.
Publications
Article type
Year

Nano Research 2025, 18(5): 94907330
Published: 17 April 2025
Downloads:67