AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Highlight | Open Access

Metavalent bonding impacts charge carrier transport across grain boundaries

Yuan Yu1( )Matthias Wuttig1,2
Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428 Jülich, Germany
Show Author Information

Graphical Abstract

Abstract

Understanding the mechanisms underpinning the charge carrier scattering at grain boundaries is crucial to design thermoelectrics and other electronic materials. Yet, this is a very challenging task due to the complex characteristics of grain boundaries and the resulting difficulties in correlating grain boundary structures to local properties. Recent advances in characterizing charge transport across grain boundaries are reviewed, demonstrating how the microstructure, composition, chemical bonding and electrical properties of the same individual grain boundary can be correlated. A much higher potential barrier height is observed in high-angle grain boundaries. This can be ascribed to the larger number density of deep trapping states caused by the local collapse of metavalent bonding. A novel approach to study the influence of the local chemical bonding mechanism around defects on the resulting local properties is thus developed. The results provide insights into the tailoring of electronic properties of metavalently bonded compounds by engineering the characteristics of grain boundaries.

References

[1]

Andrews, P. V.; West, M. B.; Robeson, C. R. The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium. Philos. Mag. J. Theor. Exp. Appl. Phys. 1969, 19, 887–898.

[2]

Cojocaru-Mirédin, O.; Raghuwanshi, M.; Wuerz, R.; Sadewasser, S. Grain boundaries in Cu(In, Ga)Se2: A review of compositionelectronic property relationships by atom probe tomography and correlative microscopy. Adv. Funct. Mater. 2021, 31, 2103119.

[3]

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

[4]

Zheng, Z. H.; Shi, X. L.; Ao, D. W.; Liu, W. D.; Li, M.; Kou, L. Z.; Chen, Y. X.; Li, F.; Wei, M.; Liang, G. X. et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. , in press, DOI: 10.1038/s41893-022-01003-6.

[5]

Cao, T. Y.; Shi, X. L.; Chen, Z. G. Advances in the design and assembly of flexible thermoelectric device. Prog. Mater. Sci. 2023, 131, 101003.

[6]

Xu, S. D.; Hong, M.; Shi, X. L.; Li, M.; Sun, Q.; Chen, Q. X.; Dargusch, M.; Zou, J.; Chen, Z. G. Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion. Energy Environ. Sci. 2020, 13, 3480–3488.

[7]

Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

[8]

Chen, W. Y.; Shi, X. L.; Zou, J.; Chen, Z. G. Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization. Mater. Sci. Eng. R Rop. 2022, 151, 100700.

[9]

Musah, J. D.; Ilyas, A. M.; Venkatesh, S.; Mensah, S.; Kwofie, S.; Roy, V. A. L.; Wu, C. M. L. Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation–A critical review. Nano Res. Energy 2022, 1, 9120034.

[10]

Yu, Y.; He, D. S.; Zhang, S. Y.; Cojocaru-Mirédin, O.; Schwarz, T.; Stoffers, A.; Wang, X. Y.; Zheng, S. Q.; Zhu, B.; Scheu, C. et al. Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy 2017, 37, 203–213.

[11]

Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109–114.

[12]

He, R.; Kraemer, D.; Mao, J.; Zeng, L. P.; Jie, Q.; Lan, Y. C.; Li, C. H.; Shuai, J.; Kim, H. S.; Liu, Y. et al. Achieving high power factor and output power density in p-type half-Heuslers Nb1–xTixFeSb. Proc. Natl. Acad. Sci. USA 2016, 113, 13576–13581.

[13]

Kanno, T.; Tamaki, H.; Sato, H. K.; Kang, S. D.; Ohno, S.; Imasato, K.; Kuo, J. J.; Snyder, G. J.; Miyazaki, Y. Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01. Appl. Phys. Lett. 2018, 112, 033903.

[14]

Sutton, A. P.; Banks, E. P.; Warwick, A. R. The five-dimensional parameter space of grain boundaries. Proc. Roy. Soc. A Mathem. Phys. Eng. Sci. 2015, 471, 20150442.

[15]

Kuo, J. J.; Kang, S. D.; Imasato, K.; Tamaki, H.; Ohno, S.; Kanno, T.; Snyder, G. J. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ. Sci. 2018, 11, 429–434.

[16]

Zhang, C. H.; Yan, G.; Wang, Y. B.; Wu, X. L.; Hu, L. P.; Liu, F. S.; Ao, W. Q.; Cojocaru-Mirédin, O.; Wuttig, M.; Snyder, G. J. et al. Grain boundary complexions enable a simultaneous optimization of electron and phonon transport leading to high-performance GeTe thermoelectric devices. Adv. Energy Mater. 2023, 13, 2203361.

[17]

Wu, R. G.; Yu, Y.; Jia, S.; Zhou, C. J.; Cojocaru-Mirédin, O.; Wuttig, M. Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding. Nat. Commun. 2023, 14, 719.

[18]

Yu, Y.; Zhou, C. J.; Zhang, S. Y.; Zhu, M.; Wuttig, M.; Scheu, C.; Raabe, D.; Snyder, G. J.; Gault, B.; Cojocaru-Mirédin, O. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Mater. Today 2020, 32, 260–274.

[19]

Ghosh, S.; Sarkar, A.; Chaudhuri, S.; Pal, A. K. Grain boundary scattering in aluminium-doped ZnO films. Thin Solid Films 1991, 205, 64–68.

[20]

Hu, C. L.; Xia, K. Y.; Fu, C. G.; Zhao, X. B.; Zhu, T. J. Carrier grain boundary scattering in thermoelectric materials. Energy Environ. Sci. 2022, 15, 1406–1422.

[21]

Seto, J. Y. W. The electrical properties of polycrystalline silicon films. J. Appl. Phys. 1975, 46, 5247–5254.

[22]

Wuttig, M.; Deringer, V. L.; Gonze, X.; Bichara, C.; Raty, J. Y. Incipient metals: Functional materials with a unique bonding mechanism. Adv. Mater. 2018, 30, 1803777.

[23]

Zhu, M.; Cojocaru-Mirédin, O.; Mio, A. M.; Keutgen, J.; Küpers, M.; Yu, Y.; Cho, J. Y.; Dronskowski, R.; Wuttig, M. Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding. Adv. Mater. 2018, 30, 1706735.

[24]

Arora, R.; Waghmare, U. V.; Rao, C. N. R. Metavalent bonding origins of unusual properties of group IV chalcogenides. Adv. Mater. , in press, DOI: 10.1002/ADMA.202208724.

[25]

Yu, Y.; Cagnoni, M.; Cojocaru-Mirédin, O.; Wuttig, M. Chalcogenide thermoelectrics empowered by an unconventional bonding mechanism. Adv. Funct. Mater. 2020, 30, 1904862.

[26]

Kooi, B. J.; Wuttig, M. Chalcogenides by design: Functionality through metavalent bonding and confinement. Adv. Mater. 2020, 32, 1908302.

[27]

Cheng, Y. D.; Cojocaru-Miredin, O.; Keutgen, J.; Yu, Y.; Kupers, M.; Schumacher, M.; Golub, P.; Raty, J. Y.; Dronskowski, R.; Wuttig, M. Understanding the structure and properties of sesqui-chalcogenides (i. e., V2VI3 or Pn2Ch3 (Pn = Pnictogen, Ch = Chalcogen) compounds) from a bonding perspective. Adv. Mater. 2019, 31, 1904316.

[28]

Wuttig, M.; Schön, C. F.; Schumacher, M.; Robertson, J.; Golub, P.; Bousquet, E.; Gatti, C.; Raty, J. Y. Halide perovskites: Advanced photovoltaic materials empowered by a unique bonding mechanism. Adv. Funct. Mater. 2022, 32, 2110166.

Nano Research Energy
Article number: 9120057
Cite this article:
Yu Y, Wuttig M. Metavalent bonding impacts charge carrier transport across grain boundaries. Nano Research Energy, 2023, 2: 9120057. https://doi.org/10.26599/NRE.2023.9120057

1988

Views

372

Downloads

16

Crossref

15

Scopus

Altmetrics

Received: 12 February 2023
Revised: 16 February 2023
Accepted: 16 February 2023
Published: 22 February 2023
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return