AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

A self-healing aqueous ammonium-ion micro batteries based on PVA-NH4Cl hydrogel electrolyte and MXene-integrated perylene anode

Ke Niu1,2,§Junjie Shi2,§Long Zhang2,§Yang Yue3Mengjie Wang3Qixiang Zhang2Yanan Ma4Shuyi Mo1Shaofei Li1Wenbiao Li1Li Wen2Yixin Hou1Fei Long1( )Yihua Gao1,2( )
College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
School of Physics and Center for Nanoscale Characterization & Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Hubei Key Laboratory of Critical Materials of New Energy Vehicles & School of Mathematics, Physics and Optoelectronic Engineering Hubei University of Automotive Technology, Shiyan 442002, China

§ Ke Niu, Junjie Shi, and Long Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The successful study of self-healing aqueous micro batteries (AMBs) which inherit the advantages of aqueous batteries and have the ability to automatically repair damage is of great significance for the development of smart wearable and portable electronic devices. However, the rate performance and the related power density of developed self-healing AMBs using metal ions as charge carriers is limited, due to the strong interaction between metal ions and electrode materials. Therefore, there is great potential for developing self-healing NH4+ AMBs, because of the outstanding advantages of NH4+ such as extremely abundant reserves, smaller hydrated ion radius and little molar mass. However, the development of self-healing NH4+ AMBs is still an extremely challenge due to the difficulty in developing self-healing hydrogels and instability of anode materials. Even though, the firstly self-healing NH4+ AMBs based on tailoring hydrogel electrolyte and MXene-integrated perylene anode were successfully assembled. As expected, self-healing NH4+ AMBs exhibit excellent energy density (82.48 µWh·cm−2) and power density (3.09 mW·cm−2), cycle life (81.67% after 3000 GCD cycles), flexibility (95.68% under 180°) and self-healing ability (94.16% after the 10th self-healing cycles).

Electronic Supplementary Material

Download File(s)
0127_ESM.pdf (5.6 MB)

References

[1]

Alam, M. M.; Crispin, X. The past, present, and future of piezoelectric fluoropolymers: Towards efficient and robust wearable nanogenerators. Nano Res. Energy 2023, 2, e9120076.

[2]

Sheng, F. F.; Zhang, B.; Cheng, R. W.; Wei, C. H.; Shen, S.; Ning, C.; Yang, J.; Wang, Y. B.; Wang, Z. L.; Dong, K. Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. Nano Res. Energy 2023, 2, e9120079.

[3]

Du, R. X.; Wang, S. Q.; Li, T. X. Energy-saving windows derived from transparent aerogels. Nano Res. Energy 2024, 3, e9120090.

[4]

Hou, C.; Tai, G. A.; Liu, Y.; Wu, Z. T.; Liang, X. C.; Liu, X. Borophene-based materials for energy, sensors and information storage applications. Nano Res. Energy 2023, 2, e9120051.

[5]

Zhang, H. Y.; Wei, Z. C.; Wu, J. H.; Cheng, F.; Ma, Y. N.; Liu, W. J.; Cheng, Y. F.; Lin, Y. J.; Liu, N. S.; Gao, Y. H. et al. Interlayer-spacing-regulated MXene/rGO foam for multi-functional zinc-ion microcapacitors. Energy Storage Mater. 2022, 50, 444–453.

[6]

Wei, Z. C.; Zhang, H. Y.; Li, A.; Cheng, F.; Wang, Y. X.; Zhang, Y. H.; Wang, M. J.; Gao, B. W.; Cheng, Y. F.; Liu, C. X. et al. Construction of in-plane 3D network electrode strategy for promoting zinc ion storage capacity. Energy Storage Mater. 2023, 55, 754–762.

[7]

Wang, S.; Zeng, G. F.; Sun, Q.; Feng, Y.; Wang, X. X.; Ma, X. Y.; Li, J.; Zhang, H.; Wen, J. Y.; Feng, J. Y. et al. Flexible electronic systems via electrohydrodynamic jet printing: A MnSe@rGO cathode for aqueous zinc-ion batteries. ACS Nano 2023, 17, 13256–13268.

[8]

Wang, M. J.; Cheng, Y. F.; Zhang, H. Y.; Cheng, F.; Wang, Y. X.; Huang, T.; Wei, Z. C.; Zhang, Y. H.; Ge, B. H.; Ma, Y. N. et al. Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 2023, 33, 2211199.

[9]

Li, A.; Wei, Z. C.; Wang, Y. X.; Zhang, Y. H.; Wang, M. J.; Zhang, H. Y.; Ma, Y. N.; Liu, C. X.; Zou, J. J.; Ge, B. H. et al. Flexible quasi-3D zinc ion microcapacitor based on V2O5-PANI cathode and MXene anode. Chem. Eng. J. 2023, 457, 141339.

[10]

Lee, K. H.; Lee, S. Y. Cell architecture designs towards high-energy-density microscale energy storage devices. Nano Res. Energy 2024, 3, e9120101.

[11]

Shi, J. J.; Wang, S. L.; Chen, X.; Chen, Z. C.; Du, X. Y.; Ni, T.; Wang, Q.; Ruan, L. M.; Zeng, W.; Huang, Z. X. An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 2019, 9, 1901957.

[12]

Wang, S.; Ma, J. X.; Shi, X. Y.; Zhu, Y. Y.; Wu, Z. S. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Res. Energy 2022, 1, e9120018.

[13]

Shi, J. J.; Hou, Y. X.; Liu, Z. Y.; Zheng, Y. F.; Wen, L.; Su, J.; Li, L. Y.; Liu, N. S.; Zhang, Z.; Gao, Y. H. The high-performance MoO3– x /MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 2022, 91, 106651.

[14]

Yue, Y.; Yang, Z. C.; Liu, N. S.; Liu, W. J.; Zhang, H.; Ma, Y. N.; Yang, C. X.; Su, J.; Li, L. Y.; Long, F. et al. A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 2016, 10, 11249–11257.

[15]

Yue, Y.; Liu, N. S.; Ma, Y. N.; Wang, S. L.; Liu, W. J.; Luo, C.; Zhang, H.; Cheng, F.; Rao, J. Y.; Hu, X. K. et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 2018, 12, 4224–4232.

[16]

Dai, J. G.; Yang, C. Y.; Xu, Y. T.; Wang, X. H.; Yang, S. Y.; Li, D. X.; Luo, L. L.; Xia, L.; Li, J. S.; Qi, X. Q. et al. MoS2@polyaniline for aqueous ammonium-ion supercapacitors. Adv. Mater. 2023, 35, 2303732.

[17]

Song, Y.; Pan, Q.; Lv, H. Z.; Yang, D.; Qin, Z. M.; Zhang, M. Y.; Sun, X. Q.; Liu, X. X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem., Int. Ed. 2021, 60, 5718–5722.

[18]

Chen, Q.; Jin, J. L.; Song, M. D.; Zhang, X. Y.; Li, H.; Zhang, J. L.; Hou, G. Y.; Tang, Y. P.; Mai, L. Q.; Zhou, L. High-energy aqueous ammonium-ion hybrid supercapacitors. Adv. Mater. 2022, 34, 2107992.

[19]

Yang, D.; Song, Y.; Zhang, M. Y.; Qin, Z. M.; Liu, J.; Liu, X. X. Solid-liquid interfacial coordination chemistry enables high-capacity ammonium storage in amorphous manganese phosphate. Angew. Chem., Int. Ed. 2022, 61, e202207711.

[20]

Wang, S.; Yuan, Z. S.; Zhang, X.; Bi, S. S.; Zhou, Z.; Tian, J. L.; Zhang, Q. C.; Niu, Z. Q. Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries. Angew. Chem., Int. Ed. 2021, 60, 7056–7060.

[21]

Du, L. Y.; Bi, S. S.; Yang, M.; Tie, Z. W.; Zhang, M. H.; Niu, Z. Q. Coupling dual metal active sites and low-solvation architecture toward high-performance aqueous ammonium-ion batteries. Proc. Natl. Acad. Sci. USA 2022, 119, e2214545119.

[22]

Niu, K.; Shi, J. J.; Zhang, L.; Yue, Y.; Mo, S. Y.; Li, S. F.; Li, W. B.; Wen, L.; Hou, Y. X.; Sun, L. et al. MXene-integrated perylene anode with ultra-stable and fast ammonium-ion storage for aqueous micro batteries. Adv. Sci. 2024, 11, 2305524.

[23]

Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem., Int. Ed. 2019, 58, 4313–4317.

[24]

Wang, D. H.; Wang, L. F.; Liang, G. J.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, J. B.; Zhi, C. Y. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 2019, 13, 10643–10652.

[25]

Ling, H. Y.; Hencz, L.; Chen, H.; Wu, Z. Z.; Su, Z.; Chen, S.; Yan, C.; Lai, C.; Liu, X. H.; Zhang, S. Q. Sustainable okra gum for silicon anode in lithium-ion batteries. Sustainable Mater. Technol. 2021, 28, e00283

[26]

Zhang, P. F.; Wu, Z. X.; Zhang, S. J.; Liu, L. Y.; Tian, Y. H.; Dou, Y. H.; Lin, Z.; Zhang, S. Q. Tannin acid induced anticorrosive film toward stable Zn-ion batteries. Nano Energy 2022, 102, 107721.

[27]

Shi, J. J.; Mao, K.; Zhang, Q. X.; Liu, Z. Y.; Long, F.; Wen, L.; Hou, Y. X.; Li, X. L.; Ma, Y. N.; Yue, Y. et al. An air-rechargeable Zn battery enabled by organic-inorganic hybrid cathode. Nano-Micro Lett. 2023, 15, 53.

[28]

Wu, X. Y.; Qi, Y. T.; Hong, J. J.; Li, Z. F.; Hernandez, A. S.; Ji, X. L. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system. Angew. Chem., Int. Ed. 2017, 56, 13026–13030.

[29]

Shi, M. J.; Wang, R. Y.; Li, L. Y.; Chen, N. T.; Xiao, P.; Yan, C.; Yan, X. B. Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 2023, 33, 2209777.

[30]

Wang, X. S.; Liu, Y. N.; Wei, Z. Y.; Hong, J. Z.; Liang, H. B.; Song, M. X.; Zhou, Y.; Huang, X. MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv. Mater. 2022, 34, 2206812.

[31]

Yue, Y.; Liu, N. S.; Su, T. Y.; Cheng, Y. F.; Liu, W. J.; Lei, D. D.; Cheng, F.; Ge, B. H.; Gao, Y. H. Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Adv. Funct. Mater. 2023, 33, 2211613.

[32]

Shi, J. J.; Wang, S. L.; Wang, Q.; Chen, X.; Du, X. Y.; Wang, M.; Zhao, Y. J.; Dong, C.; Ruan, L. M.; Zeng, W. A new flexible zinc-ion capacitor based on δ-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode. J. Power Sources 2020, 446, 227345.

[33]

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, e9120002.

[34]

Mao, K.; Shi, J. J.; Zhang, Q. X.; Hou, Y. X.; Wen, L.; Liu, Z. Y.; Long, F.; Niu, K.; Liu, N. S.; Long, F. et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy 2022, 103, 107791.

[35]

Long, F.; Shi, J. J.; Zhang, Q. X.; Liu, Z. Y.; Hou, Y. X.; Mao, K.; Liu, N. S.; Li, L. Y.; Long, F.; Gao, Y. H. Rich 1T-MoS2 nanoflowers decorated on reduced graphene oxide nanosheet for ultra-quick Zn2+ storage. Batteries Supercaps 2022, 5, e202200110.

[36]

Wen, L.; Shi, J. J.; Zhang, Q. X.; Wang, F.; Wang, S. L.; Zhang, S. J.; Wang, Q.; Mao, K.; Long, F.; Gao, Y. H. Ti3C2T x -TiSe2 analogous heterostructure for flexible zinc ion battery. J. Mater. Sci. Technol. 2023, 150, 225–232.

[37]

Long, F.; Zhang, Q. X.; Shi, J. J.; Wen, L.; Wu, Y. H.; Ren, Z. Q.; Liu, Z. Y.; Hou, Y. X.; Mao, K.; Niu, K. et al. Ultrastable and ultrafast 3D charge-discharge network of robust chemically coupled 1T-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J. 2023, 455, 140539.

[38]

Chaban, V. V.; Pal, S.; Prezhdo, O. V. Laser-induced explosion of nitrated carbon nanotubes: Nonadiabatic and reactive molecular dynamics simulations. J. Am. Chem. Soc. 2016, 138, 15927–15934.

[39]

Xiang, W. K.; Zhao, Y. H.; Jiang, Z.; Li, X. P.; Zhang, H.; Sun, Y.; Ning, Z. J.; Du, F. P.; Gao, P.; Qian, J. et al. Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis. J. Mater. Chem. A 2018, 6, 23366–23377.

[40]

Yu, M. H.; Chandrasekhar, N.; Raghupathy, R. K. M.; Ly, K. H.; Zhang, H. Z.; Dmitrieva, E.; Liang, C. L.; Lu, X. H.; Kühne, T. D.; Mirhosseini, H. et al. A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J. Am. Chem. Soc. 2020, 142, 19570–19578.

[41]

Zhang, J. Q.; Lei, Q.; Ren, Z. G.; Zhu, X. H.; Li, J.; Li, Z.; Liu, S. L.; Ding, Y. R.; Jiang, Z.; Li, J. et al. A superlattice-stabilized layered CuS anode for high-performance aqueous zinc-ion batteries. ACS Nano 2021, 15, 17748–17756.

[42]

Das, P.; Shi, X. Y.; Fu, Q.; Wu, Z. S. Substrate-free and shapeless planar micro-supercapacitors. Adv. Funct. Mater. 2020, 30, 1908758.

[43]

Chen, H.; Wu, Z. Z.; Su, Z.; Hencz, L.; Chen, S.; Yan, C.; Zhang, S. Q. A hydrophilic poly(methyl vinyl ether- alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. J. Energy Chem. 2021, 62, 127–135.

[44]

Xie, Y. T.; Zhang, H. T.; Huang, H. C.; Wang, Z. X.; Xu, Z.; Zhao, H. B.; Wang, Y. C.; Chen, N. J.; Yang, W. Q. High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy 2020, 74, 104928.

[45]

Li, L.; Zhang, J. B.; Peng, Z. W.; Li, Y. L.; Gao, C. T.; Ji, Y.; Ye, R. Q.; Kim, N. D.; Zhong, Q. F.; Yang, Y. et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 2016, 28, 838–845.

[46]

Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Gao, J.; Jin, X. T.; Zhao, Y.; Jiang, L.; Qu, L. T. A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 2018, 11, 3367–3374.

[47]

Peng, Y. Y.; Akuzum, B.; Kurra, N.; Zhao, M. Q.; Alhabeb, M.; Anasori, B.; Kumbur, E. C.; Alshareef, H. N.; Ger, M. D.; Gogotsi, Y. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 2016, 9, 2847–2854.

Nano Research Energy
Cite this article:
Niu K, Shi J, Zhang L, et al. A self-healing aqueous ammonium-ion micro batteries based on PVA-NH4Cl hydrogel electrolyte and MXene-integrated perylene anode. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120127

2054

Views

373

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 07 March 2024
Revised: 11 April 2024
Accepted: 29 April 2024
Published: 03 June 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return