AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access | Online First

Boosting oxygen evolution performance over synergistic tiara nickel clusters and thin layered double hydroxides

Xinrui Gu1,5,§Song Guo1,§Yifei Zhang2,§Jingjing Zhang1Piracha Sanwal1Liangliang Xu3( )Zhen Zhao2( )Rongchao Jin4Gao Li1,2,5( )
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
University of Chinese Academy of Sciences, Beijing 100049, China

§ Xinrui Gu, Song Guo, and Yifei Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The two-dimensional layered double hydroxides (LDHs) and zero-dimensional metal clusters have emerged as promising nanomaterials in the field of sustainable water oxidation, which can also facilitate joint experimental and computational studies. In this study, the synthesis of Ni6@LDH composites, comprising atomically precise Ni6(MPA)12 (MPA: mercaptopropionic acid) clusters embedded into LDH nanosheets via electrostatic interaction, represents a significant advancement in the development of nanomaterials for sustainable water oxidation. Ni6@NiFe-LDH exhibits superior electrochemical performance in oxygen evolution reaction (OER), exhibiting OER overpotentials of 198 mV@10 mA·cm−2 and 290 mV@100 mA·cm−2 with a low Tafel slope of 29 mV·dec−1. It surpasses the corresponding NiFe-LDH and commercial RuO2 catalysts, primarily due to the synergistic interaction between Ni6 clusters and LDHs. Interestingly, our combined experimental and computational approach reveals that the M-OOHads formation is the rate-determining step (RDS) for the Ni6-based catalysts, differing from the RDS for NiFe-LDH itself (the M-Oads formation). These efforts serve as an attempt to push forward the current research frontier to study structure–property relationships progressing from the micro-/nano-level to the precise atomic-level.

Electronic Supplementary Material

Download File(s)
0134_ESM.pdf (1.4 MB)

References

[1]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[2]

Zhang, J. J.; Raza, A.; Zhao, Y.; Guo, S.; Babar, Z. U. D.; Xu, L. L.; Cao, C. H.; Li, G. Intrinsically robust cubic MnCoO x solid solution: Achieving high activity for sustainable acidic water oxidation. J. Mater. Chem. A 2023, 11, 25345–25355.

[3]

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

[4]

Wang, C. M.; Geng, Q. H.; Fan, L. L.; Li, J. X.; Ma, L.; Li, C. L. Phase engineering oriented defect-rich amorphous/crystalline RuO2 nanoporous particles for boosting oxygen evolution reaction in acid media. Nano Res. Energy 2023, 2, e9120070.

[5]

Wang, C. Y.; Schechter, A.; Feng, L. G. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2023, 2, e9120056.

[6]

Sanwal, P.; Raza, A.; Miao, Y. X.; Lumbers, B.; Li, G. Advances in coinage metal nanoclusters: From synthesis strategies to electrocatalytic performance. Polyoxometalates 2024, 3, 9140057.

[7]

Yang, J.; Shen, Y.; Sun, Y. M.; Xian, J. H.; Long, Y. J.; Li, G. Q. Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew. Chem., Int. Ed. 2023, 62, e202302220.

[8]

Fan, X. J.; Liu, Y. Y.; Chen, S.; Shi, J. J.; Wang, J. J.; Fan, A. L.; Zan, W. Y.; Li, S. D.; Goddard, W. A.; Zhang, X. M. Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat. Commun. 2018, 9, 1809.

[9]

Li, C. M.; Wei, M.; Evans, D. G.; Duan, X. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small 2014, 10, 4469–4486.

[10]

Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

[11]

Chen, Y.; Liao, P. S.; Jin, K. H.; Zheng, Y.; Shao, H. Y.; Li, G. Q. Current progress in metal-organic frameworks and their derivatives for electrocatalytic water splitting. Inorg. Chem. Front. 2023, 10, 6489–6505.

[12]

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

[13]

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

[14]

Chen, S. Y.; Zhang, T.; Han, J. Y.; Qi, H.; Jiao, S. H.; Hou, C. M.; Guan, J. Q. Interface engineering of Fe–Sn–Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano Res. Energy 2024, 3, e9120106.

[15]

Cao, Y. H.; Guo, S.; Yu, C. L.; Zhang, J. W.; Pan, X. L.; Li, G. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15767–15773.

[16]

Cao, Y. H.; Su, Y.; Xu, L. L.; Yang, X. H.; Han, Z. K.; Cao, R.; Li, G. Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. J. Energy Chem. 2022, 71, 167–173.

[17]

Jian, F. F.; Jiao, K.; Li, Y.; Zhao, P. S.; Lu, L. D. [Ni6(SCH2CH2OH)12]: A double crown [12]Metallacrown-6 Nickel(II) cluster. Angew. Chem., Int. Ed. 2003, 42, 5722–5724.

[18]

Joya, K. S.; Sinatra, L.; AbdulHalim, L. G.; Joshi, C. P.; Hedhili, M. N.; Bakr, O. M.; Hussain, I. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation. Nanoscale 2016, 8, 9695–9703.

[19]

Maman, M. P.; Gurusamy, T.; Pal, A. K.; Jana, R.; Ramanujam, K.; Datta, A.; Mandal, S. Electrocatalytic reduction of nitrogen to ammonia using tiara-like phenylethanethiolated nickel cluster. Angew. Chem., Int. Ed. 2023, 62, e202305462.

[20]

Wei, J. D.; Zhao, R. Q.; Luo, D.; Lu, X. Y.; Dong, W. X.; Huang, Y. C.; Cheng, X. M.; Ni, Y. H. Atomically precise Ni6(SC2H4Ph)12 nanoclusters on graphitic carbon nitride nanosheets for boosting photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 631, 212–221.

[21]

Kauffman, D. R.; Alfonso, D.; Tafen, D. N.; Lekse, J.; Wang, C. J.; Deng, X. Y.; Lee, J.; Jang, H.; Lee, J. S.; Kumar, S. et al. Electrocatalytic oxygen evolution with an atomically precise nickel catalyst. ACS Catal. 2016, 6, 1225–1234.

[22]

Wen, Z. Y.; Li, Z. M.; Ge, Q. J.; Zhou, Y.; Sun, J.; Abroshan, H.; Li, G. Robust nickel cluster@Mes-HZSM-5 composite nanostructure with enhanced catalytic activity in the DTG reaction. J. Catal. 2018, 363, 26–33.

[23]

Kagalwala, H. N.; Gottlieb, E.; Li, G.; Li, T.; Jin, R. C.; Bernhard, S. Photocatalytic hydrogen generation system using a nickel-thiolate hexameric cluster. Inorg. Chem. 2013, 52, 9094–9101.

[24]

Mortensen, J. J.; Hansen, L. B.; Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 2005, 71, 035109.

[25]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[26]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[27]

Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.

[28]

Yi, J. X.; Feng, S. J.; Zuo, Y. B.; Liu, W.; Chen, C. S. Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3–δ in a CO2- and H2O-containing atmosphere. Chem. Mater. 2005, 17, 5856–5861.

[29]

Lany, S.; Raebiger, H.; Zunger, A. Magnetic interactions of Cr−Cr and Co−Co impurity pairs in ZnO within a band-gap corrected density functional approach. Phys. Rev. B 2008, 77, 241201.

[30]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[31]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[32]

Angamuthu, R.; Bouwman, E. Reduction of protons assisted by a hexanuclear nickel thiolate metallacrown: Protonation and electrocatalytic dihydrogen evolution. Phys. Chem. Chem. Phys. 2009, 11, 5578–5583.

[33]

Jiang, Y. C.; Song, Y.; Li, Y. M.; Tian, W. C.; Pan, Z. C.; Yang, P. Y.; Li, Y. S.; Gu, Q. F.; Hu, L. F. Charge transfer in ultrafine LDH nanosheets/graphene interface with superior capacitive energy storage performance. ACS Appl. Mater. Interfaces 2017, 9, 37645–37654.

[34]

Datta, A.; John, N. S.; Kulkarni, G. U.; Pati, S. K. Aromaticity in stable tiara nickel thiolates: Computational and structural analysis. J. Phys. Chem. A 2005, 109, 11647–11649.

[35]

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

[36]

Lim, C. S.; Chua, C. K.; Sofer, Z.; Klímová, K.; Boothroyd, C.; Pumera, M. Layered transition metal oxyhydroxides as tri-functional electrocatalysts. J. Mater. Chem. A 2015, 3, 11920–11929.

[37]

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

[38]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[39]

Liu, C.; Zhang, J. Y.; Huang, J. H.; Zhang, C. L.; Hong, F.; Zhou, Y.; Li, G.; Haruta, M. Efficient aerobic oxidation of glucose to gluconic acid over activated carbon-supported gold clusters. ChemSuSChem 2017, 10, 1976–1980.

[40]

Pan, Y. Z.; Chen, J. S.; Gong, S. D.; Wang, Z. H. Co-synthesis of atomically precise nickel nanoclusters and the pseudo-optical gap of Ni4(SR)8. Dalton Trans. 2018, 47, 11097–11103.

[41]

Lyons, M. E. G.; Doyle, R. L. Oxygen evolution at oxidised iron electrodes: A tale of two slopes. Int. J. Electrochem. Sci. 2012, 7, 9488–9501.

[42]

Doyle, R. L.; Godwin, I. J.; Brandon, M. P.; Lyons, M. E. G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737–13783.

[43]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[44]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[45]

Yu, J.; Yu, F.; Yuen, M. F.; Wang, C. D. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 9389–9430.

[46]
Chen, Y. M.; Gu, X. R.; Guo, S.; Zhang, J. J.; Barkaoui, S.; Xu, L. L.; Li, G. Enhancing the performance of 2D Ni–Fe layered double hydroxides by cabbage-inspired carbon conjunction for oxygen evolution reactions. ChemSusChem, in press, DOI: 10.1002/cssc.202400309.
Nano Research Energy
Cite this article:
Gu X, Guo S, Zhang Y, et al. Boosting oxygen evolution performance over synergistic tiara nickel clusters and thin layered double hydroxides. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120134

401

Views

160

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 23 June 2024
Revised: 21 July 2024
Accepted: 24 July 2024
Published: 13 August 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return