Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical water splitting in acid has been emerging as a powerful, sustainable and green protocol to produce hydrogen gas sources. In this study, we propose a novel strategy to fabricate RuOx clusters anchored on self-assembled SnO2 cubic nanocages (RuOx-SnO2 composites), which is substantiated by a combination of spectroscopy and microscopy. The resulting RuOx-SnO2 composite catalysts exhibit boosting oxygen evolution reaction (OER) performance: A Tafel slope of 41.2 mV·dec−1 and a low overpotential of 225 mV@10 mA·cm−2 in a 0.5 M H2SO4 (pH=0) electrolyte are achieved, outperforming the state-of-art OER catalyst of commercial RuO2 (com-RuO2). Notably, RuOx-SnO2 gives an extraordinarily large mass activity of 6873.4 A·gRu−1 at the overpotential of 270 mV, which is approximately 170 times higher than that of com-RuO2 (40.2 A·gRu−1). The RuOx-SnO2 exhibits a good durability for at least 100 h@50 mA·cm−2 and > 500 h@10 mA·cm−2 and a stability of 30 hours at 100 mA·cm−2 in an assembled proton exchange membrane water electrolysis, indicating that the engineered microstructure possesses significant potential for practical applications. The high intrinsic OER performance is attributed to the increasing density of exposed catalytic sites by downsizing RuOx clusters with abundant oxygen vacancies (Ov, 1.02×10−12 spin·mgcat.−1 determined by electron paramagnetic resonance). Furthermore, a Ru5c-Ov dual-active site mechanism is proposed by density functional theory calculations, that is, the moderate surface migration between five-coordinated surface Ru site (Ru5c) and Ov makes the *O→*OOH rate-determining step feasible. Moreover, this strategy provides a novel route for enhancing acidic OER activity and highly encouraging for their future applications of ruthenium-based composite catalysts.
Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.
Sanwal, P.; Raza, A.; Miao, Y. X.; Lumbers, B.; Li, G. Advances in coinage metal nanoclusters: From synthesis strategies to electrocatalytic performance. Polyoxometalates 2024, 3, 9140057.
Chen, S. Y.; Zhang, T.; Han, J. Y.; Qi, H.; Jiao, S. H.; Hou, C. M.; Guan, J. Q. Interface engineering of Fe–Sn–Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano Res. Energy 2024, 3, e9120106.
Wang, C. M.; Geng, Q. H.; Fan, L. L.; Li, J. X.; Ma, L.; Li, C. L. Phase engineering oriented defect-rich amorphous/crystalline RuO2 nanoporous particles for boosting oxygen evolution reaction in acid media. Nano Res. Energy 2023, 2, e9120070.
Cao, Y. H.; Guo, S.; Yu, C. L.; Zhang, J. W.; Pan, X. L.; Li, G. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15767–15773.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.
Wang, C. Y.; Schechter, A.; Feng, L. G. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2023, 2, e9120056.
Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrO x electrocatalysts for oxygen evolution in acidic media. Chem 2019, 5, 445–459.
Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.
Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.
Gloag, L.; Benedetti, T. M.; Cheong, S.; Li, Y. B.; Chan, X. H.; Lacroix, L. M.; Chang, S. L. Y.; Arenal, R.; Florea, I.; Barron, H. et al. Three-dimensional branched and faceted gold-ruthenium nanoparticles: Using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 10241–10245.
Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 2020, 32, 1905025.
Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.
Li, W. Q.; Zhang, H.; Hong, M. Z.; Zhang, L. L.; Feng, X.; Shi, M. F.; Hu, W. X.; Mu, S. C. Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting. Chem. Eng. J. 2022, 431, 134072.
Yan, H. H.; Jiang, Z. Q.; Deng, B. L.; Wang, Y. J.; Jiang, Z. J. Ultrathin carbon coating and defect engineering promote RuO2 as an efficient catalyst for acidic oxygen evolution reaction with super-high durability. Adv. Energy Mater. 2023, 13, 2300152.
Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energy Mater. 2019, 9, 1901313.
Liang, F. L.; Yu, Y.; Zhou, W.; Xu, X. Y.; Zhu, Z. H. Highly defective CeO2 as a promoter for efficient and stable water oxidation. J. Mater. Chem. A 2015, 3, 634–640.
Martínez-Séptimo, A.; Valenzuela, M. A.; Del Angel, P. ; de G González-Huerta, R. IrRuO x /TiO2 a stable electrocatalyst for the oxygen evolution reaction in acidic media. Int. J. Hydrogen Energy 2021, 46, 25918–25928.
Park, S. Y.; An, J. W.; Baek, J. H.; Woo, H. J.; Lee, W. J.; Kwon, S. H.; Bera, S. Activity-stability trends of the Sb–SnO2@RuO x heterostructure toward acidic water oxidation. ACS Appl. Mater. Interfaces 2023, 15, 15332–15343.
Qiao, L.; Bing, Y. F.; Wang, Y. Z.; Yu, S. S.; Liang, Z. Z.; Zeng, Y. Enhanced toluene sensing performances of Pd-loaded SnO2 cubic nanocages with porous nanoparticle-assembled shells. Sen. Actuators B: Chem. 2017, 241, 1121–1129.
Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments - reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.
Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 2014, 5, 2474–2478.
Abbou, S.; Chattot, R.; Martin, V.; Claudel, F.; Solà-Hernandez, L.; Beauger, C.; Dubau, L.; Maillard, F. Manipulating the corrosion resistance of SnO2 aerogels through doping for efficient and durable oxygen evolution reaction electrocatalysis in acidic media. ACS Catal. 2020, 10, 7283–7294.
Lee, J. H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sen. Actuators B: Chem. 2009, 140, 319–336.
Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060.
Wang, Y. Z.; Yang, M.; Ding, Y. M.; Li, N. W.; Yu, L. Recent advances in complex hollow electrocatalysts for water splitting. Adv. Funct. Mater. 2022, 32, 2108681.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Yin, J. Z.; Gao, F.; Wei, C. Z.; Lu, Q. Y. Controlled growth and applications of complex metal oxide ZnSn(OH)6 polyhedra. Inorg. Chem. 2012, 51, 10990–10995.
Xu, J. Y.; Liu, G. Y.; Li, J. L.; Wang, X. D. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction. Electrochim. Acta 2012, 59, 105–112.
Li, Z. W.; Xie, Y.; Gao, J. X.; Zhang, X. K.; Zhang, J.; Liu, Y.; Li, G. The promotional effect of multiple active sites on Fe-based oxygen reduction electrocatalysts for a zinc-air battery. J. Mater. Chem. A 2023, 11, 26573–26579.
Liu, L. L.; An, M. Z.; Yang, P. X.; Zhang, J. Q. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 9055.
Wang, X. L.; Lan, G. J.; Liu, H. Z.; Zhu, Y. H.; Li, Y. Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2018, 8, 6143–6149.
Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079.
Zhang, Y. F.; Li, Z. W.; Zhang, J. J.; Xu, L. L.; Han, Z. K.; Baiker, A.; Li, G. Nanostructured Ni–MoC x : An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res. 2023, 16, 8919–8928.
Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.
Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.
Shi, Q. Q.; Zhang, Y. F.; Li, Z. W.; Han, Z. K.; Xu, L. L.; Baiker, A.; Li, G. Morphology effects in MnCeO x solid solution-catalyzed NO reduction with CO: Active sites, water tolerance, and reaction pathway. Nano Res. 2023, 16, 6951–6959.
Zhang, J. J.; Raza, A.; Zhao, Y.; Guo, S.; Babar, Z. U. D.; Xu, L. L.; Cao, C. H.; Li, G. Intrinsically robust cubic MnCoO x solid solution: Achieving high activity for sustainable acidic water oxidation. J. Mater. Chem. A 2023, 11, 25345–25355.
Cao, Y. H.; Su, Y.; Xu, L. L.; Yang, X. H.; Han, Z. K.; Cao, R.; Li, G. Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. J. Energy Chem. 2022, 71, 167–173.
Zhang, J. J.; Xu, L. L.; Yang, X. X.; Guo, S.; Zhang, Y. F.; Zhao, Y.; Wu, G.; Li, G. Amorphous MnRuO x containing microcrystalline for enhanced acidic oxygen-evolution activity and stability. Angew. Chem., Int. Ed. 2024, 63, e202405641.
Jin, H. Y.; Liu, X. Y.; An, P. F.; Tang, C.; Yu, H. M.; Zhang, Q. H.; Peng, H. J.; Gu, L.; Zheng, Y.; Song, T. et al. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat. Commun. 2023, 14, 354.
Hao, Y. X.; Hung, S. F.; Zeng, W. J.; Wang, Y.; Zhang, C. C.; Kuo, C. H.; Wang, L. Q.; Zhao, S.; Zhang, Y.; Chen, H. Y. et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 2023, 145, 23659–23669.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.