AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Preparation and Application of Biomass-based Sprayable Hydrogels

Yujiao TanBingjing CaiXiaoyun Li( )Xiaoying Wang( )
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province, 510640, China

These authors contributed equally to this work.

Show Author Information

Abstract

Hydrogels have three-dimensional network structures that have been widely applied owing to their high water content, excellent biocompatibility, and physicochemical properties. Compared with conventional hydrogels, sprayable hydrogels exhibit excellent temporal and spatial controllability. Biomass materials offer easy accessibility, biocompatibility, biodegradability, and other physicochemical properties that are extensively used in the formation of sprayable hydrogels. In situ formed biomass-based sprayable hydrogels are realized by chemical or physical crosslinking. Rapid spray filming, in situ drug delivery, high permeability, and flexible portability enable biomass-based sprayable hydrogels to show great potential for topical drug delivery, wound healing, and other applications. This review describes in detail the status of research on the preparation and application of biomass-based sprayable hydrogels and suggests prospects for their future development.

References

[1]

Peppas N A, Hilt J Z, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials, 2006, 18(11), 1345-1360.

[2]

Mathew A P, Uthaman S, Cho K-H, Cho C-S, Park I-K. Injectable hydrogels for delivering biotherapeutic molecules. International Journal of Biological Macromolecules, 2018, 110, 17-29.

[3]

Majcher M J, Babar A, Lofts A, Leung A, Li X, Abu-Hijleh F, Smeets N M B, Mishra R K, Hoare T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. Journal of Controlled Release, 2021, 330, 738-752.

[4]

Zhang J, Qin Y, Ou Y, Shen Y, Tang B, Zhang X, Yu Z. Injectable granular hydrogels as colloidal assembly microreactors for customized structural colored objects. Angewandte Chemie International Edition, 2022, DOI: 10.1002/ange.202206339.

[5]

Sun X, Ma C, Gong W, Ma Y, Ding Y, Liu L. Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings. International Journal of Biological Macromolecules, 2020, 157, 522-529.

[6]

Dong Y, Li S, Li X, Wang X. Smart MXene/agarose hydrogel with photothermal property for controlled drug release. International Journal of Biological Macromolecules, 2021, 190, 693-699.

[7]

Zhuang P, Greenberg Z, He M. Biologically enhanced starch bio-ink for promoting 3D cell growth. Advanced Materials Technologies, 2021, DOI: 10.1002/admt.202100551.

[8]

Luo B, Li X, Liu P, Cui M, Zhou G, Long J, Wang X. Self-assembled NIR-responsive MoS2@quaternized chitosan/nanocellulose composite paper for recyclable antibacteria. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2022.128896.

[9]

Deng L, Wang B, Li W, Han Z, Chen S, Wang H. Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing. International Journal of Biological Macromolecules, 2022, 217, 77-87.

[10]

Zhang D, Chang R, Ren Y, He Y, Guo S, Guan F, Yao M. Injectable and reactive oxygen species-scavenging gelatin hydrogel promotes neural repair in experimental traumatic brain injury. International Journal of Biological Macromolecules, 2022, 219, 844-863.

[11]

Xu Z, Yuan L, Liu Q, Li D, Mu C, Zhao L, Li X, Ge L. Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2022.119237.

[12]

Yamaguchi N, Zhang L, Chae B-S, Palla C S, Furst E M, Kiick K L. Growth factor mediated assembly of cell receptor-responsive hydrogels. Journal of the American Chemical Society, 2007, 129(11), 3040-3041.

[13]

Pike D B, Cai S, Pomraning K R, Firpo M A, Fisher R J, Shu X Z, Prestwich G D, Peattie R A. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials, 2006, 27(30), 5242-5251.

[14]

Mehrabi A, Karimi A, Mashayekhan S, Samadikuchaksaraei A, Milan P B. In-situ forming hydrogel based on thiolated chitosan/carboxymethyl cellulose (CMC) containing borate bioactive glass for wound healing. International Journal of Biological Macromolecules, 2022, 222, 620-635.

[15]

Liu L, Gao Q, Lu X, Zhou H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian Journal of Pharmaceutical Sciences, 2016, 11(6), 673-683.

[16]

Sun J, Tan H, Liu H, Jin D, Yin M, Lin H, Qu X, Liu C. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomaterials Science, 2020, 8(24), 6946-6956.

[17]

Qi P, Zheng Y G, Ohta S, Kokudo N, Hasegawa K, Ito T. In situ fabrication of double-layered hydrogels via spray processes to prevent postoperative peritoneal adhesion. ACS Biomaterials Science & Engineering, 2019, 5(9), 4790-4798.

[18]

Yan X, Fang W W, Xue J, Sun T C, Dong L, Zha Z, Qian H, Song Y H, Zhang M, Gong X, et al. Thermoresponsive in situ forming hydrogel with sol-gel irreversibility for effective methicillin-resistant staphylococcus aureus infected wound healing. ACS Nano, 2019, 13(9), 10074-10084.

[19]

Pehlivaner Kara M O, Ekenseair A K. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration. Journal of Biomedical Materials Research Part A, 2016, 104(10), 2383-2393.

[20]

Pahla G, Mamvura T A, Ntuli F, Muzenda E. Energy densification of animal waste lignocellulose biomass and raw biomass. South African Journal of Chemical Engineering, 2017, 24, 168-175.

[21]

Chen Y W, Lee H V, Juan J C, Phang S-M. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers, 2016, 151, 1210-1219.

[22]

Wang J, Qian W, He Y, Xiong Y, Song P, Wang R M. Reutilization of discarded biomass for preparing functional polymer materials. Waste Management, 2017, 65, 11-21.

[23]

Yadollahi M, Farhoudian S, Namazi H. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 2015, 79, 37-43.

[24]

Li Y-C E. Sustainable biomass materials for biomedical applications. ACS Biomaterials Science & Engineering, 2019, 5(5), 2079-2092.

[25]

Gao Y, Li Z, Huang J, Zhao M, Wu J. In situ formation of injectable hydrogels for chronic wound healing. Journal of Materials Chemistry B, 2020, 8(38), 8768-8780.

[26]

Eivazzadeh-Keihan R, Noruzi E B, Mehrban S F, Aliabadi H A M, Karimi M, Mohammadi A, Maleki A, Mahdavi M, Larijani B, Shalan A E. Review: The latest advances in biomedical applications of chitosan hydrogel as a powerful natural structure with eye-catching biological properties. Journal of Materials Science, 2022, 57(6), 3855-3891.

[27]

Xiao C, You R, Fan Y, Zhang Y. Tunable functional hydrogels formed from a versatile water-soluble chitosan. International Journal of Biological Macromolecules, 2016, 85, 386-390.

[28]

Arteche Pujana M, Pérez-Álvarez L, Cesteros Iturbe L C, Katime I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydrate Polymers, 2013, 94(2), 836-842.

[29]

Fatimi A, Okoro O V, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review. Gels, 2022, DOI: 10.3390/gels8030179.

[30]

Kumar A, Kaur H. Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects. International Journal of Biological Macromolecules, 2020, 145, 950-964.

[31]

Zang S, Mu R, Chen F, Wei X, Zhu L, Han B, Yu H, Bi B, Chen B, Wang Q, et al. Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class Ⅲ furcation defects. Materials Science and Engineering: C, 2019, 99, 919-928.

[32]

Argüelles-Monal W M, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota M T, Montiel-Herrera M. Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers, 2018, DOI: 10.3390/polym10030342.

[33]

Cho J, Heuzey M-C, Bégin A, Carreau P J. Physical gelation of chitosan in the presence of β-glycerophosphate: The effect of temperature. Biomacromolecules, 2005, 6(6), 3267-3275.

[34]

Qi X, Xiang Y, Cai E, You S, Gao T, Lan Y, Deng H, Li Z, Hu R, Shen J. All-in-one: Harnessing multifunctional injectable natural hydrogels for ordered therapy of bacteria-infected diabetic wounds. Chemical Engineering Journal, 2022, DOI: 10.1016/j.cej.2022.135691.

[35]

Shao Z, Yin T, Jiang J, He Y, Xiang T, Zhou S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioactive Materials, 2023, 20, 561-573.

[36]

Zhou Z, Zhang X, Xu L, Lu H, Chen Y, Wu C, Hu P. A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing. International Journal of Biological Macromolecules, 2022, 220, 326-336.

[37]

Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chemical Society Reviews, 2012, 41(6), 2193-2221.

[38]

Kobayashi S, Uyama H, Kimura S. Enzymatic polymerization. Chemical Reviews, 2001, 101(12), 3793-3818.

[39]

Lee F, Bae K H, Kurisawa M. Injectable hydrogel systems crosslinked by horseradish peroxidase. Biomedical Materials, 2015, DOI: 10.1088/1748-6041/11/1/014101.

[40]

Wu S, Zhang Z, Xu R, Wei S, Xiong F, Cui W, Li B, Xue Y, Xuan H, Yuan H. A spray-filming, tissue-adhesive, and bioactive polysaccharide self-healing hydrogel for skin regeneration. Materials & Design, 2022, DOI: 10.1016/j.matdes.2022.110669.

[41]

Zhong H, Gao X, Cheng C, Liu C, Wang Q, Han X. The structural characteristics of seaweed polysaccharides and their application in gel drug delivery systems. Marine Drugs, 2020, DOI: 10.3390/md18120658.

[42]

Urzedo A L, Gonçalves M C, Nascimento M H M, Lombello C B, Nakazato G, Seabra A B. Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomaterials Science & Engineering, 2020, 6(4), 2117-2134.

[43]

Xie Y, Gao P, He F, Zhang C. Application of alginate-based hydrogels in hemostasis. Gels, 2022, DOI: 10.3390/gels8020109.

[44]

Cruz-Maya I, Altobelli R, Marrese M, Guarino V. Design of alginate based micro-gels via electro fluid dynamics to construct microphysiological cell culture systems. Polymers for Advanced Technologies, 2021, 32(8), 2981-2989.

[45]

Augst A D, Kong H J, Mooney D J. Alginate hydrogels as biomaterials. Macromolecular Bioscience, 2006, 6(8), 623-633.

[46]

Pan H, Zhang C, Wang T, Chen J, Sun S K. In situ fabrication of intelligent photothermal indocyanine green-alginate hydrogel for localized tumor ablation. ACS Applied Materials & Interfaces, 2019, 11(3), 2782-2789.

[47]

Zheng B D, Ye J, Yang Y C, Huang Y Y, Xiao M T. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2021.118770.

[48]

Ji D, Park J M, Oh M S, Nguyen T L, Shin H, Kim J S, Kim D, Park H S, Kim J. Superstrong, superstiff, and conductive alginate hydrogels. Nature Communications, 2022, 13(1), 1-10.

[49]

Wang X, Zhang X, Yang X, Guo X, Liu Y, Li Y, Ding Z, Teng Y, Hou S, Shi J, et al. An antibacterial and antiadhesion in situ forming hydrogel with sol-spray system for noncompressible hemostasis. ACS Applied Materials & Interfaces, 2023, 15(1), 662-676.

[50]

Du Y, Li L, Peng H, Zheng H, Cao S, Lv G, Yang A, Li H, Liu T. A spray-filming self-healing hydrogel fabricated from modified sodium alginate and gelatin as a bacterial barrier. Macromolecular Bioscience, 2020, DOI: 10.1002/mabi.201900303.

[51]

Taboada G M, Dosta P, Edelman E R, Artzi N. Sprayable hydrogel for instant sealing of vascular anastomosis. Advanced Materials, 2022, DOI: 10.1002/adma.202203087.

[52]

Roquero D M, Othman A, Melman A, Katz E. Iron(Ⅲ)-cross-linked alginate hydrogels: a critical review. Materials Advances, 2022, 3(4), 1849-1873.

[53]

Schanté C E, Zuber G, Herlin C, Vandamme T F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydrate Polymers, 2011, 85(3), 469-489.

[54]

Liu S, Liu X, Ren Y, Wang P, Pu Y, Yang R, Wang X, Tan X, Ye Z. Mussel-inspired dual-cross-linking hyaluronic acid/ε‍-polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Applied Materials & Interfaces, 2020, 12(25), 27876-27888.

[55]

Burdick J A, Prestwich G D. Hyaluronic acid hydrogels for biomedical applications. Advanced Materials, 2011, 23(12), H41-H56.

[56]

Pérez L A, Hernández R, Alonso J M, Pérez-González R, Sáez-Martínez V. Hyaluronic acid hydrogels crosslinked in physiological conditions: synthesis and biomedical applications. Biomedicines, 2021, DOI: 10.3390/biomedicines9091113.

[57]

Li L, Wang N, Jin X, Deng R, Nie S, Sun L, Wu Q, Wei Y, Gong C. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials, 2014, 35(12), 3903-3917.

[58]

Collins M N, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 2013, 92(2), 1262-1279.

[59]

Ding Y-W, Wang Z-Y, Ren Z-W, Zhang X-W, Wei D-X. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomaterials Science, 2022, 10(13), 3393-3409.

[60]

Collins M N, Birkinshaw C. Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. Journal of Applied Polymer Science, 2007, 104(5), 3183-3191.

[61]

Zamboni F, Okoroafor C, Ryan M P, Pembroke J T, Strozyk M, Culebras M, Collins M N. On the bacteriostatic activity of hyaluronic acid composite films. Carbohydrate Polymers, 2021, DOI: 10.1016/j.carbpol.2021.117803.

[62]

Zamboni F, Ryan E, Culebras M, Collins M N. Labile crosslinked hyaluronic acid via urethane formation using bis(β‍-isocyanatoethyl) disulphide with tuneable physicochemical and immunomodulatory properties. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2020.116501.

[63]

Li S, Pei M, Wan T, Yang H, Gu S, Tao Y, Liu X, Zhou Y, Xu W, Xiao P. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2020.116922.

[64]

Zheng Z, Yang X, Zhang Y, Zu W, Wen M, Liu T, Zhou C, Li L. An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of breast cancer recurrence. Carbohydrate Polymers, 2023, DOI: 10.1016/j.carbpol.2022.120493.

[65]

Dong Y, Cui M, Qu J, Wang X, Kwon S H, Barrera J, Elvassore N, Gurtner G C. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomaterialia, 2020, 108, 56-66.

[66]

Stoica A E, Chircov C, Grumezescu A M. Hydrogel dressings for the treatment of burn wounds: An up-to-date overview. Materials, 2020, DOI: 10.3390/ma13122853.

[67]

Wang C, Chen J, Yue X, Xia X, Zhou Z, Wang G, Zhang X, Hu P, Huang Y, Pan X, et al. Improving water-absorption and mechanical strength: Lyotropic liquid crystalline-based spray dressings as a candidate wound management system. AAPS PharmSciTech, 2022, DOI: 10.1208/s12249-021-02205-5.

[68]

Wang X, Wu J, Wang M, Lu C, Li W, Lu Q, Li Y, Lian B, Zhang B. Substance P&dimethyloxallyl glycine-loaded carboxymethyl chitosan/gelatin hydrogel for wound healing. Journal of Biomedical Materials Research Part A, 2023, 111(3), 404-414.

[69]

Nur Hanani Z A, Roos Y H, Kerry J P. Use and application of gelatin as potential biodegradable packaging materials for food products. International Journal of Biological Macromolecules, 2014, 71, 94-102.

[70]

Lee S H, Lee Y, Chun Y W, Crowder S W, Young P P, Park K D, Sung H J. In situ crosslinkable gelatin hydrogels for vasculogenic induction and delivery of mesenchymal stem cells. Advanced Functional Materials, 2014, 24(43), 6771-6781.

[71]

Zhao X, Lang Q, Yildirimer L, Lin Z Y, Cui W, Annabi N, Ng K W, Dokmeci M R, Ghaemmaghami A M, Khademhosseini A. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Advanced Healthcare Materials, 2016, 5(1), 108-118.

[72]

Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules, 2013, 14(4), 1085-1092.

[73]

Moreira C D F, Carvalho S M, Sousa R G, Mansur H S, Pereira M M. Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Materials Chemistry and Physics, 2018, 218, 304-316.

[74]

Mushtaq F, Raza Z A, Batool S R, Zahid M, Onder O C, Rafique A, Nazeer M A. Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. International Journal of Biological Macromolecules, 2022, 218, 601-633.

[75]

Dinh T N, Hou S, Park S, Shalek B A, Jeong K J. Gelatin hydrogel combined with polydopamine coating to enhance tissue integration of medical implants. ACS Biomaterials Science & Engineering, 2018, 4(10), 3471-3477.

[76]

Lien S-M, Ko L-Y, Huang T-J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia, 2009, 5(2), 670-679.

[77]

Kang H-W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 1999, 20(14), 1339-1344.

[78]

Van den Bulcke A I, Bogdanov B, de Rooze N, Schacht E H, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000, 1(1), 31-38.

[79]

Yue K, Trujillo-De Santiago G, Alvarez M M, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73, 254-271.

[80]

Annabi N, Rana D, Shirzaei Sani E, Portillo-Lara R, Gifford J L, Fares M M, Mithieux S M, Weiss A S. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials, 2017, 139, 229-243.

[81]

Yoon D S, Lee Y, Ryu H A, Jang Y, Lee K-M, Choi Y, Choi W J, Lee M, Park K M, Park K D, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomaterialia, 2016, 38, 59-68.

[82]

Ouyang Y, Zhao J, Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. International Journal of Biological Macromolecules, 2023, 227, 505-523.

[83]

Zainal S H, Mohd N H, Suhaili N, Anuar F H, Lazim A M, Othaman R. Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology, 2021, 10, 935-952.

[84]

Luo X, Zhang L. New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Research International, 2013, 52(1), 387-400.

[85]

Kundu R, Mahada P, Chhirang B, Das B. Cellulose hydrogels: green and sustainable soft biomaterials. Current Research in Green and Sustainable Chemistry, 2022, DOI: 10.1016/j.crgsc.2021.100252.

[86]

Dadoo N, Landry S B, Bomar J D, Gramlich W M. Synthesis and spatiotemporal modification of biocompatible and stimuli-responsive carboxymethyl cellulose hydrogels using thiol-norbornene chemistry. Macromolecular Bioscience, 2017, DOI: 10.1002/mabi.201700107.

[87]

Li Y, Hou X, Pan Y, Wang L, Xiao H. Redox-responsive carboxymethyl cellulose hydrogel for adsorption and controlled release of dye. European Polymer Journal, 2020, DOI: 10.1016/j.eurpolymj.2019.109447.

[88]

Chen W, Bu Y, Li D, Liu C, Chen G, Wan X, Li N. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose. Cellulose, 2020, 27(2), 853-865.

[89]

Cai C, Wang T, Han X, Yang S, Lai C, Yuan T, Feng Z, He N. In situ wound sprayable double-network hydrogel: Preparation and characterization. Chinese Chemical Letters, 2022, 33(4), 1963-1969.

[90]

Talasaz A H H, Ghahremankhani A A, Moghadam S H, Malekshahi M R, Atyabi F, Dinarvand R. In situ gel forming systems of poloxamer 407 and hydroxypropyl cellulose or hydroxypropyl methyl cellulose mixtures for controlled delivery of vancomycin. Journal of Applied Polymer Science, 2008, 109(4), 2369-2374.

[91]

Curvello R, Raghuwanshi V S, Garnier G. Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science, 2019, 267, 47-61.

[92]

Li L, Cheng X, Huang Q, Cheng Y, Xiao J, Hu J. Sprayable antibacterial hydrogels by simply mixing of aminoglycoside antibiotics and cellulose nanocrystals for the treatment of infected wounds. Advanced Healthcare Materials, 2022, DOI: 10.1002/adhm.202201286.

[93]

Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014, 59, 302-325.

[94]

Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release, 2007, 119(1), 5-24.

[95]

Mahdavinia G R, Rahmani Z, Karami S, Pourjavadi A. Magnetic/pH-sensitive κ‍-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. Journal of Biomaterials Science, Polymer Edition, 2014, 25(17), 1891-1906.

[96]

Tavakoli S, Kharaziha M, Nemati S, Kalateh A. Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydrate Polymers, 2021, DOI: 10.1016/j.carbpol.2020.117013.

[97]

Tavakoli S, Kharaziha M, Kermanpur A, Mokhtari H. Sprayable and injectable visible-light κ‍-carrageenan hydrogel for in-situ soft tissue engineering. International Journal of Biological Macromolecules, 2019, 138, 590-601.

[98]

Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nature Nanotechnology, 2019, 14(1), 89-97.

[99]

Wang P, Peng L, Lin J, Li Y, Luo Q, Jiang S, Tian H, Zhang Y, Liu X, Liu J. Enzyme hybrid virus-like hollow mesoporous CuO adhesive hydrogel spray through glucose-activated cascade reaction to efficiently promote diabetic wound healing. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2021.128901.

[100]

Cheng H, Shi Z, Yue K, Huang X, Xu Y, Gao C, Yao Z, Zhang Y S, Wang J. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomaterialia, 2021, 124, 219-232.

[101]

Okabayashi K, Ashrafian H, Zacharakis E, Hasegawa H, Kitagawa Y, Athanasiou T, Darzi A. Adhesions after abdominal surgery: a systematic review of the incidence, distribution and severity. Surgery Today, 2014, 44(3), 405-420.

[102]

Van Goor H. Consequences and complications of peritoneal adhesions. Colorectal Disease, 2007, 9(s2), 25-34.

[103]

Tang J, Xiang Z, Bernards M T, Chen S. Peritoneal adhesions: occurrence, prevention and experimental models. Acta Biomaterialia, 2020, 116, 84-104.

[104]

Chandel A K S, Shimizu A, Hasegawa K, Ito T. Advancement of biomaterial-based postoperative adhesion barriers. Macromolecular Bioscience, 2021, DOI: 10.1002/mabi.202000395.

[105]

Kucukozkan T, Ersoy B, Uygur D, Gundogdu C. Prevention of adhesions by sodium chromoglycate, dexamethasone, saline and aprotinin after pelvic surgery. ANZ Journal of Surgery, 2004, 74(12), 1111-1115.

[106]

Zhang E, Li J, Zhou Y, Che P, Ren B, Qin Z, Ma L, Cui J, Sun H, Yao F. Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomaterialia, 2017, 55, 420-433.

[107]

Bang S, Lee E, Ko Y-G, Kim W I, Kwon O H. Injectable pullulan hydrogel for the prevention of postoperative tissue adhesion. International Journal of Biological Macromolecules, 2016, 87, 155-162.

[108]

Brown C B, Luciano A A, Martin D, Peers E, Scrimgeour A, diZerega G S. Adept (icodextrin 4% solution) reduces adhesions after laparoscopic surgery for adhesiolysis: A double-blind, randomized, controlled study. Fertility and Sterility, 2007, 88(5), 1413-1426.

[109]

Chino N, Ishihara H, Niimi T, Kai M, Kawanishi T. Development of a spray-type adhesion barrier. Polymer Journal, 2020, 52(5), 473-479.

[110]

Cezar C, Korell M, Tchartchian G, Ziegler N, Senshu K, Herrmann A, Larbig A, de Wilde R L. How to avoid risks for patients in minimal-access trials: Avoiding complications in clinical first-in-human studies by example of the ADBEE study. Best Practice & Research Clinical Obstetrics & Gynaecology, 2016, 35, 84-96.

[111]

Li H, Wei X, Yi X, Tang S, He J, Huang Y, Cheng F. Antibacterial, hemostasis, adhesive, self-healing polysaccharides-based composite hydrogel wound dressing for the prevention and treatment of postoperative adhesion. Materials Science and Engineering: C, 2021, DOI: 10.1016/j.msec.2021.111978.

[112]

Brochhausen C, Schmitt V H, Rajab T K, Planck C N E, Krämer B, Wallwiener M, Hierlemann H, Kirkpatrick C J. Intraperitoneal adhesions—An ongoing challenge between biomedical engineering and the life sciences. Journal of Biomedical Materials Research Part A, 2011, 98A(1), 143-156.

[113]

Mutsaers S E, Birnie K, Lansley S, Herrick S E, Lim C-B, Prêle C M. Mesothelial cells in tissue repair and fibrosis. Frontiers in Pharmacology, 2015, DOI: 10.3389/fphar. 2015.00113.

[114]

Davis L E, Shalin S C, Tackett A J. Current state of melanoma diagnosis and treatment. Cancer Biology & Therapy, 2019, 20(11), 1366-1379.

[115]

Etzkorn J R, Sharkey J M, Grunyk J W, Shin T M, Sobanko J F, Miller C J. Frequency of and risk factors for tumor upstaging after wide local excision of primary cutaneous melanoma. Journal of the American Academy of Dermatology, 2017, 77(2), 341-348.

[116]

McCrorie P, Taresco V, Ritchie A, Rahman R. A mechanically-engineered spray to increase brain penetration of chemotherapeutic nanoparticles in the treatment of high grade gliomas. Neuro-Oncology, 2019, DOI: 10.1093/neuonc/noz167.002.

[117]

McCrorie P, Mistry J, Taresco V, Lovato T, Fay M, Ward I, Ritchie A A. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 108-120.

[118]

Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016, DOI: 10.1038/ncomms13193.

[119]

Wang C, Ye Y, Hu Q, Bellotti A, Gu Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Advanced Materials, 2017, DOI: 10.1002/adma.201606036.

[120]

Niu C, Xu Y, An S, Zhang M, Hu Y, Wang L, Peng Q. Near-infrared induced phase-shifted ICG/Fe3O4 loaded PLGA nanoparticles for photothermal tumor ablation. Scientific Reports, 2017, DOI: 10.1038/s41598-017-06122-1.

[121]

Wang S, Zhang L, Zhao J, He M, Huang Y, Zhao S. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Science Advances, 2021, DOI: 10.1126/sciadv.abe3588.

[122]

Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, Ji X, Xie T, Farokhzad O C, Tao W. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter, 2020, 3(1), 127-144.

[123]

Du W, Liu T, Xue F, Cai X, Chen Q, Zheng Y, Chen H. Fe3O4 Mesocrystals with distinctive magnetothermal and nanoenzyme activity enabling self-reinforcing synergistic cancer therapy. ACS Applied Materials & Interfaces, 2020, 12(17), 19285-19294.

[124]

Ma W, Ma H, Qiu P, Zhang H, Yang Z, Ma B, Chang J, Shi X, Wu C. Sprayable β-FeSi2 composite hydrogel for portable skin tumor treatment and wound healing. Biomaterials, 2021, DOI: 10.1016/j.biomaterials.2021. 121225.

[125]

Li Y, He J, Lyu X, Yuan Y, Wang G, Zhao B. Chitosan-based thermosensitive hydrogel for nasal delivery of exenatide: Effect of magnesium chloride. International Journal of Pharmaceutics, 2018, 553(1), 375-385.

[126]

Gholizadeh H, Cheng S, Pozzoli M, Messerotti E, Traini D, Young P, Kourmatzis A, Ong H X. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opinion on Drug Delivery, 2019, 16(4), 453-466.

[127]

Zhao Y, Mao R, Yan H, Zhang Y, Ma H, Tang Y. Sprayable NAHAO® hydrogel alleviates pain and accelerates rat oral mucositis wound healing. Journal of Stomatology, Oral and Maxillofacial Surgery, 2023, DOI: 10.1016/j.jormas.2022.09.022.

[128]

Tavakoli S, Klar A S. Advanced hydrogels as wound dressings. Biomolecules, 2020, DOI: 10.3390/biom10081169.

[129]

Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis V A, Singh S R. Advances in skin regeneration using tissue engineering. International Journal of Molecular Sciences, 2017, DOI: 10.3390/ijms18040789.

[130]

Liao Y, Xie L, Ye J, Chen T, Huang T, Shi L, Yuan M. Sprayable hydrogel for biomedical applications. Biomaterials Science, 2022, 10(11), 2759-2771.

[131]

Cooke M E, Jones S W, Ter Horst B, Moiemen N, Snow M, Chouhan G, Hill L J, Esmaeli M, Moakes R J A, Holton J, et al. Structuring of hydrogels across multiple length scales for biomedical applications. Advanced Materials, 2018, DOI: 10.1002/adma.201705013.

[132]

Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, Xie A, Wang J, Sui X, Deng L, et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proceedings of the National Academy of Sciences, 2020, 117(46), 28667-28677.

[133]

Liu H, Mei Y, Zhao Q, Zhang A, Tang L, Gao H, Wang W. Black phosphorus, an emerging versatile nanoplatform for cancer immunotherapy. Pharmaceutics, 2021, DOI: 10.3390/pharmaceutics13091344.

[134]

He J J, McCarthy C, Camci-Unal G. Development of Hydrogel-based Sprayable Wound Dressings for Second- and Third-degree Burns. Advanced NanoBiomed Research, 2021, DOI: 10.1002/anbr.202100004.

[135]

Cheng C, Zhong H, Zhang Y, Gao X, Wang J, Liu J, Han X. Bacterial responsive hydrogels based on quaternized chitosan and GQDs-‍ε‍-PL for chemo-photothermal synergistic anti-infection in diabetic wounds. International Journal of Biological Macromolecules, 2022, 210, 377-393.

[136]

Liu J, Jiang W, Xu Q, Zheng Y. Progress in antibacterial hydrogel dressing. Gels, 2022, DOI: 10.3390/gels8080503.

[137]

Shchelik I S, Sieber S, Gademann K. Green algae as a drug delivery system for the controlled release of antibiotics. Chemistry-A European Journal, 2020, 26(70), 16644-16648.

[138]

Perez-Fernandez D, Shcherbakov D, Matt T, Leong N C, Kudyba I, Duscha S, Boukari H, Patak R, Dubbaka S R, Lang K, et al. 4′-O-Substitutions determine selectivity of aminoglycoside antibiotics. Nature Communications, 2014, DOI: 10.1038/ncomms4112.

[139]

Li Y, Liu X, Tan L, Cui Z, Yang X, Zheng Y, Yeung K W K, Chu P K, Wu S. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Advanced Functional Materials, 2018, DOI: 10.1002/adfm.201800299.

[140]

Zhang S, Ding F, Liu Y, Ren X. Glucose-responsive biomimetic nanoreactor in bacterial cellulose hydrogel for antibacterial and hemostatic therapies. Carbohydrate Polymers, 2022, DOI: 10.1016/j.carbpol.2022.119615.

[141]

Li J, Liu X, Tan L, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung K W K, et al. Zinc-doped prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nature Communications, 2019, DOI: 10.1038/s41467-019-12429-6.

[142]

Mao C, Xiang Y, Liu X, Zheng Y, Yeung K W K, Cui Z, Yang X, Li Z, Liang Y, Zhu S, et al. Local photothermal/photodynamic synergistic therapy by disrupting bacterial membrane to accelerate reactive oxygen species permeation and protein leakage. ACS Applied Materials & Interfaces, 2019, 11(19), 17902-17914.

[143]

Tan L, Li J, Liu X, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung K W K, et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Advanced Materials, 2018, DOI: 10.1002/adma. 201801808.

[144]

Birben E, Sahiner U M, Sackesen C, Erzurum S, Kalayci O. Oxidative Stress and Antioxidant Defense. World Allergy Organization Journal, 2012, 5(1), 9-19.

[145]

Ellis S, Lin E J, Tartar D. Immunology of wound healing. Current Dermatology Reports, 2018, 7(4), 350-358.

[146]

Wu H, Tito N, Giraldo J P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 2017, 11(11), 11283-11297.

[147]

Nelson B C, Johnson M E, Walker M L, Riley K R, Sims C M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 2016, DOI: 10.3390/antiox5020015.

[148]

Kumar A, Jaiswal M. Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. Journal of Applied Polymer Science, 2016, DOI: 10.1002/app.43260.

Paper and Biomaterials
Pages 1-19
Cite this article:
Tan Y, Cai B, Li X, et al. Preparation and Application of Biomass-based Sprayable Hydrogels. Paper and Biomaterials, 2023, 8(2): 1-19. https://doi.org/10.26599/PBM.2023.9260006

1842

Views

306

Downloads

4

Crossref

4

Scopus

Altmetrics

Received: 20 February 2023
Accepted: 23 March 2023
Published: 25 April 2023
© 2023 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return