AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (48.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in polyoxometalate-based lanthanide–oxo clusters

Shu-Rong LiWei-Dong LiuLa-Sheng LongLan-Sun ZhengXiang-Jian Kong ( )
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

Abstract

Polyoxometalate (POM)-based lanthanide-oxo clusters (LnOCs) are a class of polynuclear lanthanide–oxygen complexes formed by polyoxometalate stabilization through oxygen bridges in which POMs can be viewed as multidentate inorganic ligands. POM-based LnOCs have received interest owing to their interesting structures and potential applications. In this paper, we summarize the classification, synthesis strategies, and properties of POM-based LnOCs. POM-based LnOCs are classified into three main categories according to their metal core element type and quantity: pure 4f clusters, 5d–4f clusters, and 3d–4f clusters. Their synthetic strategies are divided into four categories based on the source of the POM involved in the structural assembly: the lacunary POMs ligand-directed method, the in-situ transformation of lacunary POMs ligand-directed method, the in-situ generation of lacunary POMs ligand-directed method, and mixed synthesis strategies. In addition, the single-molecule magnets of POM-based LnOCs and their proton conduction properties are summarized.

References

[1]

Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamäki, A.; Layfield, R. A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.

[2]

Fu, X.; Fu, S.; Lu, Q.; Zhang, J.; Wan, P. P.; Liu, J. L.; Zhang, Y.; Chen, C. H.; Li, W.; Wang, H. D. et al. Excitation energy mediated cross-relaxation for tunable upconversion luminescence from a single lanthanide ion. Nat. Commun. 2022, 13, 4741.

[3]

Xu, Q. F.; Liu, B. L.; Ye, M. Y.; Zhuang, G. L.; Long, L. S.; Zheng, L. S. Gd(OH)F2: A promising cryogenic magnetic refrigerant. J. Am. Chem. Soc. 2022, 144, 13787–13793.

[4]

Schroll, C. A.; Chatterjee, S.; Levitskaia, T. G.; Heineman, W. R.; Bryan, S. A. Electrochemistry and Spectroelectrochemistry of Europium (III) Chloride in 3LiCl-2KCl from 643 to 1123 K. Anal. Chem. 2013, 85, 9924–9931.

[5]

Li, X. Z.; Tian, C. B.; Sun, Q. F. Coordination-directed self-assembly of functional polynuclear lanthanide supramolecular architectures. Chem. Rev. 2022, 122, 6374–6458.

[6]

Sahoo, S.; Mondal, S.; Sarma, D. Luminescent lanthanide metal organic frameworks (LnMOFs): A versatile platform towards organomolecule sensing. Coord. Chem. Rev. 2022, 470, 214707.

[7]

Chen, R.; Chen, C. L.; Du, M. H.; Wang, X.; Wang, C.; Long, L. S.; Kong, X. J.; Zheng, L. S. Soluble lanthanide-transition-metal clusters Ln36Co12 as effective molecular electrocatalysts for water oxidation. Chem. Commun. (Camb.) 2021, 57, 3611–3614.

[8]

Du, M. H.; Chen, L. Q.; Jiang, L. P.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Counterintuitive lanthanide hydrolysis-induced assembly mechanism. J. Am. Chem. Soc. 2022, 144, 5653–5660.

[9]

Du, M. H.; Wang, D. H.; Wu, L. W.; Jiang, L. P.; Li, J. P.; Long, L. S.; Zheng, L. S.; Kong, X. J. Hierarchical assembly of coordination macromolecules with atypical geometries: Gd44Co28 crown and Gd95Co60 cage. Angew. Chem., Int. Ed. 2022, 61, e202200537.

[10]

Liu, W. D.; Li, G. J.; Xu, H.; Du, M. H.; Long, L. S.; Zheng, L. S.; Kong, X. J. Photoluminescence of lanthanide-titanium-oxo clusters Eu9Ti2 and Tb9Ti2 based on a β-diketone ligand. Inorg. Chem. 2022, 61, 9849–9854.

[11]

Wang, X.; Wang, S. Q.; Chen, J. N.; Jia, J. H.; Wang, C.; Paillot, K.; Breslavetz, I.; Long, L. S.; Zheng, L. S.; Rikken, G. L. J. A. et al. Magnetic 3d-4f chiral clusters showing multimetal site magneto-chiral dichroism. J. Am. Chem. Soc. 2022, 144, 8837–8847.

[12]

Weng, Z. Z.; Xie, J.; Huang, K. X.; Li, J. P.; Long, L. S.; Kong, X. J.; Zheng, L. S. Asymmetric cyanosilylation of aldehydes by a lewis acid/base synergistic catalyst of chiral metal clusters. Inorg. Chem. 2022, 61, 4121–4129.

[13]

Chen, R.; Hong, Z. F.; Zhao, Y. R.; Zheng, H.; Li, G. J.; Zhang, Q. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Ligand-dependent luminescence properties of lanthanide-titanium oxo clusters. Inorg. Chem. 2019, 58, 15008–15012.

[14]

Chen, R.; Yan, Z. H.; Kong, X. J.; Long, L. S.; Zheng, L. S. Integration of lanthanide-transition-metal clusters onto CdS surfaces for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 16796–16800.

[15]

Chen, R.; Zhuang, G. L.; Wang, Z. Y.; Gao, Y. J.; Li, Z.; Wang, C.; Zhou, Y.; Du, M. H.; Zeng, S. Y.; Long, L. S. et al. Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. Natl. Sci. Rev. 2021, 8, nwaa234.

[16]

Jin, P. B.; Yu, K. X.; Luo, Q. C.; Liu, Y. Y.; Zhai, Y. Q.; Zheng, Y. Z. Tetraanionic arachno-carboranyl ligand imparts strong axiality to terbium(III) single-molecule magnets. Angew. Chem., Int. Ed. 2022, 61, e202203285.

[17]

Zhang, H. L.; Zhai, Y. Q.; Nojiri, H.; Schröder, C.; Hsu, H. K.; Chan, Y. T.; Fu, Z. D.; Zheng, Y. Z. {ScnGdn} heterometallic rings: Tunable ring topology for spin-wave excitations. J. Am. Chem. Soc. 2022, 144, 15193–15202.

[18]

Chen, S. S.; Su, H. F.; Long, L. S.; Zheng, L. S.; Kong, X. J. Hydrolysis-promoted building block assembly: Structure transformation from Y12 wheel and Y34 ship to Y60 cage. Inorg. Chem. 2021, 60, 16922–16926.

[19]

Du, M. H.; Xu, S. H.; Li, G. J.; Xu, H.; Lin, Y.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Modification of multi-component building blocks for assembling giant chiral lanthanide-titanium molecular rings. Angew. Chem., Int. Ed. 2022, 61, e202116296.

[20]

Huang, W. M.; Chen, W. M.; Bai, Q. X.; Zhang, Z.; Feng, M.; Zheng, Z. P. Anion-guided stepwise assembly of high-nuclearity lanthanide hydroxide clusters. Angew. Chem., Int. Ed. 2022, 61, e202205385.

[21]

Pan, Z. H.; Weng, Z. Z.; Kong, X. J.; Long, L. S.; Zheng, L. S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion. Coord. Chem. Rev. 2022, 457, 214419.

[22]

Zheng, X. Y.; Kong, X. J.; Zheng, Z. P.; Long, L. S.; Zheng, L. S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers. Acc. Chem. Res. 2018, 51, 517–525.

[23]

Zheng, X. Y.; Xie, J.; Kong, X. J.; Long, L. S.; Zheng, L. S. Recent advances in the assembly of high-nuclearity lanthanide clusters. Coord. Chem. Rev. 2019, 378, 222–236.

[24]

Das, V.; Kaushik, R.; Hussain, F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications. Coord. Chem. Rev. 2020, 413, 213271.

[25]

Fang, X. K.; Kögerler, P.; Speldrich, M.; Schilder, H.; Luban, M. A polyoxometalate-based single-molecule magnet with an S = 21/2 ground state. Chem. Commun. (Camb.) 2012, 48, 1218–1220.

[26]

Ma, X.; Yang, W.; Chen, L. J.; Zhao, J. W. Significant developments in rare-earth-containing polyoxometalate chemistry: Synthetic strategies, structural diversities and correlative properties. CrystEngComm 2015, 17, 8175–8197.

[27]

Meng, X.; Wang, H. N.; Song, S. Y.; Zhang, H. J. Proton-conducting crystalline porous materials. Chem. Soc. Rev. 2017, 46, 464–480.

[28]

Ogiwara, N.; Iwano, T.; Ito, T.; Uchida, S. Proton conduction in ionic crystals based on polyoxometalates. Coord. Chem. Rev. 2022, 462, 214524.

[29]

Yang, P.; Alsufyani, M.; Emwas, A. H.; Chen, C. Q.; Khashab, N. M. Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: Enhanced proton conductivity via metal-oxo cluster within cluster assemblies. Angew. Chem., Int. Ed. 2018, 57, 13046–13051.

[30]

Boskovic, C. Rare earth polyoxometalates. Acc. Chem. Res. 2017, 50, 2205–2214.

[31]

Wang, Z. M.; Xin, X.; Zhang, M.; Li, Z.; Lv, H. J.; Yang, G. Y. Recent advances of mixed-transition-metal-substituted polyoxometalates. Sci. China Chem. 2022, 65, 1515–1525.

[32]

Liu, J. C.; Zhao, J. W.; Streb, C.; Song, Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.

[33]

Zhao, J. W.; Li, Y. Z.; Chen, L. J.; Yang, G. Y. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Commun. (Camb.) 2016, 52, 4418–4445.

[34]

Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.

[35]

Chen, X. L.; Zhou, Y.; Roy, V. A. L.; Han, S. T. Evolutionary metal oxide clusters for novel applications: Toward high-density data storage in nonvolatile memories. Adv. Mater. 2018, 30, 1703950.

[36]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[37]

Sun, M.; Zhang, J. Z.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J. M. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds. Chem. Rev. 2014, 114, 981–1019.

[38]

Yang, L.; Lei, J.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Chen, J. J.; Dong, Q. F. The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Adv. Mater. 2021, 33, 2005019.

[39]

Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.

[40]

Zhao, H. Y.; Li, Y. Z.; Zhao, J. W.; Wang, L.; Yang, G. Y. State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord. Chem. Rev. 2021, 443, 213966.

[41]

Peacock, R. D.; Weakley, T. J. R. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J. Chem. Soc. A 1971, 1836–1839

[42]

Peacock, R. D.; Weakley, T. J. R. Heteropolytungstate complexes of the lanthanide elements. Part Ⅱ. Electronic spectra:A metal-ligand charge-transfer transition of cerium (Ⅲ). J. Chem. Soc. A 1971, 1937–1940

[43]

Lin, Y. D.; Ge, R.; Tian, C. B.; Sun, C.; Sun, Y. Q.; Zeng, Q. X.; Li, X. X.; Zheng, S. T. 3d-4f Heterometallic cluster incorporated polyoxoniobates with magnetic properties. Chem. Commun. (Camb.) 2021, 57, 8624–8627.

[44]

Ribó, E. G.; Bell, N. L.; Long, D. L.; Cronin, L. Engineering highly reduced molybdenum polyoxometalates via the incorporation of d and f block metal ions. Angew. Chem., Int. Ed. 2022, 61, e202201672.

[45]

Jin, L.; Li, X. X.; Qi, Y. J.; Niu, P. P.; Zheng, S. T. Giant hollow heterometallic polyoxoniobates with sodalite-type lanthanide-tungsten-oxide cages: Discrete nanoclusters and extended frameworks. Angew. Chem., Int. Ed. 2016, 55, 13793–13797.

[46]

Sadakane, M.; Dickman, M. H.; Pope, M. T. Controlled assembly of polyoxometalate chains from lacunary building blocks and lanthanide-cation linkers. Angew. Chem., Int. Ed. 2000, 39, 2914–2916.

[47]

Ibrahim, M.; Mbomekallé, I. M.; De Oliveira, P.; Baksi, A.; Carter, A. B.; Peng, Y.; Bergfeldt, T.; Malik, S.; Anson, C. E. Syntheses, crystal structure, electrocatalytic, and magnetic properties of the monolanthanide-containing germanotungstates [Ln(H2O)nGe W11O39]5− (Ln = Dy, Er, n = 4, 3). ACS Omega 2019, 4, 21873–21882.

[48]

Cañón-Mancisidor, W.; Zapata-Lizama, M.; Hermosilla-Ibáñez, P.; Cruz, C.; Venegas-Yazigi, D.; Espallargas, G. M. Hybrid organic-inorganic mononuclear lanthanoid single ion magnets. Chem. Commun. (Camb.) 2019, 55, 14992–14995.

[49]

Jing, J. X.; Shi, N.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. An inorganic-organic hybrid polyoxotungstogermanate based on [Ln(α-GeW11O39)2] dimer and dimethylammonium: Synthesis, crystal structure and photoluminescence property. J. Mol. Struct. 2022, 1250, 131686.

[50]

Mougharbel, A. S.; Bhattacharya, S.; Bassil, B. S.; Rubab, A.; Van Leusen, J.; Kögerler, P.; Wojciechowski, J.; Kortz, U. Lanthanide-containing 22-tungsto-2-germanates [Ln(GeW11O39)2]13−: Synthesis, structure, and magnetic properties. Inorg. Chem. 2020, 59, 4340–4348.

[51]

Wan, R.; Ma, P. T.; Han, M. D.; Zhang, D. D.; Zhang, C.; Niu, J. Y.; Wang, J. P. Discovery and isolation of the trans-isomers of two 1:2-type lanthanide-containing monolacunary Dawson-type tungstophosphates: [LnIII2-P2W17O61)2]17− (Ln = La, Ce). Dalton Trans. 2017, 46, 5398–5405.

[52]

Tanuhadi, E.; Al-Sayed, E.; Roller, A.; Čipčić-Paljetak, H.; Verbanac, D.; Rompel, A. Synthesis, characterization, and phosphoesterase activity of a series of 4f- and 4d-sandwich-type germanotungstates [(n-C4H9)4N]l/mH2[(M(H2O)3)(γ-GeW10O35)2](M = CeIII, NdIII, GdIII, ErIII, l = 7; ZrIV, m = 6). Inorg. Chem. 2020, 59, 14078–14084.

[53]

Wang, W. Y.; Izarova, N. V.; Van Leusen, J.; Kögerler, P. CeIII-functionalized polyoxotungstates: Discrete vs. extended architectures. Cryst. Growth Des. 2019, 19, 4860–4870.

[54]

Liu, L. Z.; Li, F. Y.; Xu, L.; Liu, X. Z.; Gao, G. G. Magnetic relaxation behavior of lanthanide substituted Dawson-type tungstoarsenates. J. Solid State Chem. 2010, 183, 350–355.

[55]

Huo, Y.; Chen, Y. C.; Wu, S. G.; Liu, J. L.; Jia, J. H.; Chen, W. B.; Wang, B. L.; Zhang, Y. Q.; Tong, M. L. Effect of bridging ligands on magnetic behavior in dinuclear dysprosium cores supported by polyoxometalates. Inorg. Chem. 2019, 58, 1301–1308.

[56]

Ibrahim, M.; Baksi, A.; Peng, Y.; Al-Zeidaneen, F. K.; Mbomekalle, I. M.; De Oliveira, P.; Anson, C. E. Synthesis, characterization, electrochemistry, photoluminescence and magnetic properties of a dinuclear erbium(III)-containing monolacunary dawson-type tungstophosphate: [{Er(H2O)(CH3COO)(P2W17O61)}2]16−. Molecules 2020, 25, 4229.

[57]

Liu, J. C.; Yu, J.; Han, Q.; Wen, Y.; Chen, L. J.; Zhao, J. W. First quadruple-glycine bridging mono-lanthanide-substituted borotungstate hybrids. Dalton Trans. 2016, 45, 16471–16484.

[58]

Ma, P. T.; Hu, F.; Wu, H. C.; Liu, X. P.; Wang, J. P.; Niu, J. Y. Luminescent dimeric polyoxotungstate [Ho(C4H2O6)(α-PW11O39)]216− with magnetism and reversible photochromism. J. Lumin. 2020, 217, 116760.

[59]

Niu, J. Y.; Wang, K. H.; Chen, H. N.; Zhao, J. W.; Ma, P. T.; Wang, J. P.; Li, M. X.; Bai, Y.; Dang, D. B. Assembly chemistry between lanthanide cations and monovacant keggin polyoxotungstates: Two types of lanthanide substituted phosphotungstates [{(α-PW11O39H)Ln(H2O)3}2]6− and [{(α-PW11O39)Ln(H2O)(η2,μ-1,1)-CH3COO}2]10−. Cryst. Growth Des. 2009, 9, 4362–4372.

[60]

Wang, X. H.; Liu, Y. J.; Jin, M. T.; Wu, Y. X.; Chen, L. J.; Zhao, J. W. Two families of rare-earth-substituted dawson-type monomeric and dimeric phosphotungstates functionalized by carboxylic ligands. Cryst. Growth Des. 2017, 17, 5295–5308.

[61]

Zhang, S. W.; Wang, Y.; Zhao, J. W.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Two types of oxalate-bridging rare-earth-substituted Keggin-type phosphotungstates {[(α-PW11O39)RE(H2O)]2(C2O4)}10− and {(α-x-PW10O38)RE2(C2O4)(H2O)2}3−. Dalton Trans. 2012, 41, 3764–3772.

[62]

Knoth, W. H.; Domaille, P. J.; Harlow, R. L. Heteropolyanions of the types M3(W9PO34)212− and MM'M''(W9PO34)212−: Novel coordination of nitrate and nitrite. Inorg. Chem. 1986, 25, 1577–1584.

[63]

Tomsa, A. R.; Muresan, L.; Koutsodimou, A.; Falaras, P.; Rusu, M. Synthesis and characterisation of two new lanthanide sandwich-type heteropolyoxometalates. Polyhedron 2003, 22, 2901–2909.

[64]

Giansiracusa, M. J.; Vonci, M.; Van Den Heuvel, W.; Gable, R. W.; Moubaraki, B.; Murray, K. S.; Yu, D. H.; Mole, R. A.; Soncini, A.; Boskovic, C. Carbonate-bridged lanthanoid triangles: Single-molecule magnet behavior, inelastic neutron scattering, and ab initio studies. Inorg. Chem. 2016, 55, 5201–5214.

[65]

Khoshnavazi, R.; Gholamyan, S. Sandwich-type polyoxoanions based on A-β-GeW9O3410−. Synthesis and characterization of [(A-β-GeW9O34)2(MOH2)3CO3]13− (M = Y3+, Sm3+, and Yb3+) polyoxoanions. J. Coord. Chem 2010, 63, 3365–3372.

[66]

Khoshnavazi, R.; Nicolò, F.; Rudbari, H. A.; Naseri, E.; Aminipour, A. Sandwich-type polyoxometalates of the later lanthanide ions. Syntheses and structures of [(A-XW9O34)2(H2OM)3CO3]11− (X = P5+, As5+) (M = Tb3+, Dy3+, Er3+). J. Coord. Chem 2013, 66, 1374–1383.

[67]

Khoshnavazi, R. ; Sadeghi, R. ; Bahrami, L. High stable sandwich-type polyoxometallates based on A-β-SiW9O3410−. Synthesis, chemical properties and characterization of [(A-β-SiW9O34)2(MOH2)3CO3]13− (M = Y3+ and Yb3+). Polyhedron 2008, 27, 1855–1859.

[68]

Kong, X. J.; Lin, Z. K.; Zhang, Z. M.; Zhang, T.; Lin, W. B. Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6411–6416.

[69]

Liu, Y. P.; Zhao, S. F.; Guo, S. X.; Bond, A. M.; Zhang, J.; Zhu, G. B.; Hill, C. L.; Geletii, Y. V. Electrooxidation of ethanol and methanol using the molecular catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−. J. Am. Chem. Soc. 2016, 138, 2617–2628.

[70]

Lv, H. J.; Guo, W. W.; Wu, K. F.; Chen, Z. Y.; Bacsa, J.; Musaev, D. G.; Geletii, Y. V.; Lauinger, S. M.; Lian, T. Q.; Hill, C. L. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14015–14018.

[71]

Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–346.

[72]

Dufaye, M.; Duval, S.; Nursiah, K.; Stoclet, G.; Trivelli, X.; Loiseau, T. Bottom-up synthesis of functionalized {Ce4(SiW9O34)2(L)2} polyoxometalates. CrystEngComm 2018, 20, 7144–7155.

[73]

Duval, S.; Béghin, S.; Falaise, C.; Trivelli, X.; Rabu, P.; Loiseau, T. Stabilization of tetravalent 4f (Ce), 5d (Hf), or 5f (Th, U) clusters by the [α-SiW9O34]10− polyoxometalate. Inorg. Chem. 2015, 54, 8271–8280.

[74]

Cai, Z. W.; Liu, B. X.; Yang, T.; Li, X. X.; Zheng, S. T. Syntheses and structures of the first two tetra-scandium substituted polyoxometalates. Inorg. Chem. Commun. 2017, 80, 1–5.

[75]

Wang, Y.; Sun, X. P.; Li, S. Z.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Synthesis and magnetic properties of tartrate-bridging rare-earth-containing polytungstoarsenate aggregates from an adaptive precursor [As2W19O67(H2O)]14−. Dalton Trans. 2015, 44, 733–738.

[76]

Suzuki, K.; Tang, F.; Kikukawa, Y.; Yamaguchi, K.; Mizuno, N. Visible-light-induced photoredox catalysis with a tetracerium-containing silicotungstate. Angew. Chem., Int. Ed. 2014, 53, 5356–5360.

[77]

Fang, X. K.; Anderson, T. M.; Benelli, C.; Hill, C. L. Polyoxometalate-supported Y- and YbIII-hydroxo/oxo clusters from carbonate-assisted hydrolysis. Chem.—Eur. J. 2005, 11, 712–718.

[78]

Zhang, Y.; Li, Y. M.; Pang, J. J.; Liu, Y. F.; Li, P.; Chen, L. J.; Zhao, J. W. Two penta-REIII encapsulated tetravacant dawson selenotungstates and nanoscale derivatives and their luminescence properties. Inorg. Chem. 2019, 58, 7078–7090.

[79]

Huo, Y. ; Chen, Y. C. ; Wu, S. G. ; Jia, J. H. ; Chen, W. B. ; Liu, J. L. ; Tong, M. L. pH-controlled assembly of organophosphonate-bridged dysprosium(III) single-molecule magnets based on polyoxometalates. Inorg. Chem 2018, 57, 6773–6777.

[80]

Ma, P. T.; Wan, R.; Wang, Y. Y.; Hu, F.; Zhang, D. D.; Niu, J. Y.; Wang, J. P. Coordination-driven self-assembly of a 2D graphite-like framework constructed from high-nuclear Ce10 cluster encapsulated polyoxotungstates. Inorg. Chem. 2016, 55, 918–924.

[81]

Ma, P. T.; Wan, R.; Si, Y. N.; Hu, F.; Wang, Y. Y.; Niu, J. Y.; Wang, J. P. Double-malate bridging tri-lanthanoid cluster encapsulated arsenotungstates: Syntheses, structures, luminescence and magnetic properties. Dalton Trans. 2015, 44, 11514–11523.

[82]

Hao, Y.; Zhong, L.; Li, H. H.; Zheng, S. T. Two lanthanide-substituted polyoxometalates featuring novel crescent-shaped Ln5 clusters: Structures, ion conductivities, and magnetic properties. Cryst. Growth Des. 2019, 19, 1329–1335.

[83]

Huo, Y.; Chen, Y. C.; Liu, J. L.; Jia, J. H.; Chen, W. B.; Wu, S. G.; Tong, M. L. A wheel-shaped Dy(III) single-molecule magnet supported by polyoxotungstates. Dalton Trans. 2017, 46, 16796–16801.

[84]

Dufaye, M.; Duval, S.; Stoclet, G.; Loiseau, T. Influence of pH on CeIV-[AsIIIW9O33]9− association for the formation of hexanuclear cerium(IV) oxo-hydroxo-clusters stabilized by trivacant polyanions. CrystEngComm 2020, 22, 371–380.

[85]

Duval, S.; Roussel, P.; Loiseau, T. Synthesis of a large dodecameric cerium cluster stabilized by the [SiW9O34]10− polyoxometalate. Inorg. Chem. Commun. 2017, 83, 52–54.

[86]

Matsunaga, S.; Inoue, Y.; Mihara, K.; Nomiya, K. Synthesis and crystal structure of hexacerium(IV) cluster-containing Keggin polyoxometalate trimer. Inorg. Chem. Commun. 2017, 80, 61–64.

[87]

Huo, Y.; Wan, R.; Ma, P. T.; Liu, J. L.; Chen, Y. C.; Li, D. D.; Niu, J. Y.; Wang, J. P.; Tong, M. L. Organophosphonate-bridged polyoxometalate-based dysprosium (III) single-molecule magnet. Inorg. Chem. 2017, 56, 12687–12691.

[88]

Ma, X. Y.; He, P. P.; Xu, B. J.; Lu, J. K.; Wan, R.; Wu, H. C.; Wang, Y.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Pyrazine dicarboxylate-bridged arsenotungstate: Synthesis, characterization, and catalytic activities in epoxidation of olefins and oxidation of alcohols. Dalton Trans. 2019, 48, 12956–12963.

[89]

Ritchie, C.; Baslon, V.; Moore, E. G.; Reber, C.; Boskovic, C. Sensitization of lanthanoid luminescence by organic and inorganic ligands in lanthanoid-organic-polyoxometalates. Inorg. Chem. 2012, 51, 1142–1151.

[90]

Ritchie, C.; Speldrich, M.; Gable, R. W.; Sorace, L.; Kögerler, P.; Boskovic, C. Utilizing the adaptive polyoxometalate [As2W19O67(H2O)]14- to support a polynuclear lanthanoid-based single-molecule magnet. Inorg. Chem. 2011, 50, 7004–7014.

[91]

Xiong, J. ; Yang, Z. X. ; Ma, P. T. ; Lin, D. M. ; Zheng, Q. J. ; Huo, Y. pH-controlled assembly of two polynuclear Dy(III)-containing polytungstoarsenates with magnetic and luminescence properties. Inorg. Chem 2021, 60, 7519–7526.

[92]

Chen, H. H.; Xiao, Z. K.; Yan, B.; Wu, H. C.; Ma, P. T.; Wang, J. P.; Niu, J. Y. H-shaped oxalate-bridging lanthanoid-incorporated arsenotungstates. Dalton Trans. 2020, 49, 15731–15738.

[93]

Ma, P. T.; Hu, F.; Huo, Y.; Zhang, D. D.; Zhang, C.; Niu, J. Y.; Wang, J. P. Magnetoluminescent bifunctional dysprosium-based phosphotungstates with synthesis and correlations between structures and properties. Cryst. Growth Des. 2017, 17, 1947–1956.

[94]

Howell, R. C.; Perez, F. G.; Jain, S.; Horrocks, W. D. Jr.; Rheingold, A. L. ; Francesconi, L. C. A new type of heteropolyoxometalates formed from lacunary polyoxotungstate ions and europium or yttrium cations. Angew. Chem., Int. Ed 2001, 40, 4031–4034.

[95]

Hussain, F.; Gable, R. W.; Speldrich, M.; Kögerler, P.; Boskovic, C. Polyoxotungstate-encapsulated Gd6 and Yb10 complexes. Chem. Commun. (Camb.). 2009, 328–330

[96]

Li, Z.; Li, X. X.; Yang, T.; Cai, Z. W.; Zheng, S. T. Four-shell polyoxometalates featuring high-nuclearity Ln26 clusters: Structural transformations of nanoclusters into frameworks triggered by transition-metal ions. Angew. Chem., Int. Ed. 2017, 56, 2664–2669.

[97]

Liu, J. H.; Zhang, R. T.; Zhang, J.; Zhao, D.; Li, X. X.; Sun, Y. Q.; Zheng, S. T. A series of 3D porous lanthanide-substituted polyoxometalate frameworks based on rare hexadecahedral {Ln6W8O28} heterometallic cage-shaped cluster. Inorg. Chem. 2019, 58, 14734–14740.

[98]

Wassermann, K.; Dickman, M. H.; Pope, M. T. Self-assembly of supramolecular polyoxometalates: The compact, water-soluble heteropolytungstate anion [As12Ce16(H2O)36W148O524]76−. Angew. Chem., Int. Ed. 1997, 36, 1445–1448.

[99]

Jiang, J.; Liu, L. L.; Liu, G. P.; Wang, D.; Zhang, Y.; Chen, L. J.; Zhao, J. W. Organic-inorganic hybrid cerium-encapsulated selenotungstate including three building blocks and its electrochemical detection of dopamine and paracetamol. Inorg. Chem. 2020, 59, 15355–15364.

[100]

Li, H. L.; Lian, C.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Two unusual nanosized Nd3+-substituted selenotungstate aggregates simultaneously comprising lacunary Keggin and Dawson polyoxotungstate segments. Nanoscale 2020, 12, 16091–16101.

[101]

Li, H. L.; Liu, Y. J.; Li, Y. M.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Unprecedented selenium and lanthanide simultaneously bridging selenotungstate aggregates stabilized by four tetra-vacant dawson-like {Se2W14} units. Chem.—Asian J. 2018, 13, 2897–2907.

[102]

Liu, J. L.; Wang, D.; Xu, X.; Li, H. L.; Zhao, J. W.; Chen, L. J. Multi-nuclear rare-earth-implanted tartaric acid-functionalized selenotungstates and their fluorescent and magnetic properties. Inorg. Chem. 2021, 60, 2533–2541.

[103]

Liu, L. L.; Jiang, J.; Cui, L. M.; Zhao, J. W.; Cao, X. H.; Chen, L. J. Double trigonal pyramidal {SeO3} groups bridged 2-picolinic acid modified cerium-inlaid polyoxometalate including mixed selenotungstate subunits for electrochemically sensing ochratoxin A. Inorg. Chem. 2022, 61, 1949–1960.

[104]

Liu, Y. J.; Li, H. L.; Lu, C. T.; Gong, P. J.; Ma, X. Y.; Chen, L. J.; Zhao, J. W. Organocounterions-assisted and pH-controlled self-assembly of five nanoscale high-nuclear lanthanide substituted heteropolytungstates. Cryst. Growth Des. 2017, 17, 3917–3928.

[105]

Zhang, Y.; Jiang, J.; Liu, Y. F.; Li, P.; Liu, Y.; Chen, L. J.; Zhao, J. W. Multi-praseodymium-and-tungsten bridging octameric tellurotungstate and its 2D honeycomb composite film for detecting estrogen. Nanoscale 2020, 12, 10842–10853.

[106]

Liu, L. L.; Jiang, J.; Liu, X. Y.; Liu, G. P.; Wang, D.; Chen, L. J.; Zhao, J. W. First series of mixed (PIII, SeIV)-heteroatomoriented rare-earth-embedded polyoxotungstates containing distinct building blocks. Inorg. Chem. Front. 2020, 7, 4640–4651.

[107]

Han, L. Z.; Jiao, C. Q.; Chen, W. C.; Shao, K. Z.; Jin, L. Y.; Su, Z. M. Assembly of tetra-nuclear YbIII-containing selenotungstate clusters: Synthesis, structures, and magnetic properties. Dalton Trans. 2021, 50, 11535–11541.

[108]

Chen, W. C.; Yan, L. K.; Wu, C. X.; Wang, X. L.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Assembly of keggin-/dawson-type polyoxotungstate clusters with different metal units and SeO32- heteroanion templates. Cryst. Growth Des. 2014, 14, 5099–5110.

[109]

Han, Q.; Wen, Y.; Liu, J. C.; Zhang, W.; Chen, L. J.; Zhao, J. W. Rare-earth-incorporated tellurotungstate hybrids functionalized by 2-picolinic acid ligands: Syntheses, structures, and properties. Inorg. Chem. 2017, 56, 13228–13240.

[110]

Li, H. L.; Liu, Y. J.; Zheng, R.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Trigonal pyramidal {AsO2(OH)} bridging tetranuclear rare-earth encapsulated polyoxotungstate aggregates. Inorg. Chem. 2016, 55, 3881–3893.

[111]

Li, H. L.; Lian, C.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Two Ce3+-substituted selenotungstates regulated by N,N-dimethylethanolamine and dimethylamine hydrochloride. Inorg. Chem. 2019, 58, 8442–8450.

[112]

Li, H. L.; Liu, Y. J.; Liu, J. L.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Structural transformation from dimerization to tetramerization of serine-decorated rare-earth-incorporated arsenotungstates induced by the usage of rare-earth salts. Chem.—Eur. J. 2017, 23, 2673–2689.

[113]

Li, Y. M.; Li, H. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Three types of distinguishing L-alanine-decorated and rare-earth-incorporated arsenotungstate hybrids prepared in a facile one-step assembly strategy. Inorg. Chem. 2019, 58, 3479–3491.

[114]

Shang, S. X.; Lin, Z. G.; Yin, A. X.; Yang, S.; Chi, Y. N.; Wang, Y.; Dong, J.; Liu, B.; Zhen, N.; Hill, C. L. et al. Self-assembly of Ln(III)-containing tungstotellurates(VI): Correlation of structure and photoluminescence. Inorg. Chem. 2018, 57, 8831–8840.

[115]

Wang, D.; Li, Y. M.; Zhang, Y.; Xu, X.; Liu, Y.; Chen, L. J.; Zhao, J. W. Construction of Ln3+-substituted arsenotungstates modified by 2,5-thiophenedicarboxylic acid and application in selective fluorescence detection of Ba2+ in aqueous solution. Inorg. Chem. 2020, 59, 6839–6848.

[116]

Wang, Y. J.; Wu, S. Y.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. Octahedron-shaped three-shell Ln14-substituted polyoxotungstogermanates encapsulating a W4O15 cluster: Luminescence and frequency dependent magnetic properties. Chem. Commun. (Camb.) 2019, 55, 2857–2860.

[117]

Zhang, Y.; Wang, D.; Zeng, B. X.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. An unprecedented polyhydroxycarboxylic acid ligand bridged multi-EuIII incorporated tellurotungstate and its luminescence propertie. Dalton Trans. 2020, 49, 8933–8948.

[118]

Du, M. H.; Zheng, X. Y.; Kong, X. J.; Long, L. S.; Zheng, L. S. Synthetic protocol for assembling giant heterometallic hydroxide clusters from building blocks: Rational design and efficient synthesis. Matter 2020, 3, 1334–1349.

[119]

Fang, X. K.; Kögerler, P. A polyoxometalate-based manganese carboxylate cluster. Chem. Commun. (Camb.) 2008, 3396–3398

[120]

Fang, X. K.; Kögerler, P. PO43−-mediated polyoxometalate supercluster assembly. Angew. Chem., Int. Ed. 2008, 47, 8123–8126.

[121]

Chen, W. L.; Li, Y. G.; Wang, Y. H.; Wang, E. B.; Zhang, Z. M. A new polyoxometalate-based 3d-4f heterometallic aggregate: A model for the design and synthesis of new heterometallic clusters. Dalton Trans. 2008, 865–867

[122]

Gu, Y. N.; Yu, H.; Lin, L. D.; Wu, Y. L.; Li, Z.; Pan, W. Y.; He, J.; Chen, L.; Li, Q.; Li, X. X. Two rare Cr-Ln (Ln = Dy, Tb) heterometallic cluster substituted polyoxometalates featuring hexameric aggregates: Hydrothermal syntheses, crystal structures and magnetic studies. New J. Chem. 2019, 43, 3011–3016.

[123]

Wang, J.; Zhao, J. W.; Zhao, H. Y.; Yang, B. F.; He, H.; Yang, G. Y. Syntheses, structures and properties of two multi-iron-samarium/multi-iron substituted germanotungstates. CrystEngComm 2014, 16, 252–259.

[124]

Zhang, Z. M.; Li, Y. G.; Yao, S.; Wang, E. B. Hexameric polyoxometalates decorated by six 3d-4f heterometallic clusters. Dalton Trans. 2011, 40, 6475–6479.

[125]

Ibrahim, M.; Krämer, S.; Schork, N.; Guthausen, G. Polyoxometalate-based high-spin cluster systems: A NMR relaxivity study up to 14 GHz/33 T. Dalton Trans. 2019, 48, 15597–15604.

[126]

Ibrahim, M.; Mereacre, V.; Leblanc, N.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Self-assembly of a giant tetrahedral 3d-4f single-molecule magnet within a polyoxometalate system. Angew. Chem., Int. Ed. 2015, 54, 15574–15578.

[127]

Ibrahim, M.; Peng, Y.; Moreno-Pineda, E.; Anson, C. E.; Schnack, J.; Powell, A. K. Gd3 triangles in a polyoxometalate matrix: Tuning molecular magnetocaloric effects in {Gd30M8} polyoxometalate/cluster hybrids through variation of M2+. Small Struct. 2021, 2, 2170029.

[128]

Reinoso, S.; Galán-Mascarós, J. R.; Lezama, L. New type of heterometallic 3d-4f rhomblike core in weakley-like polyoxometalates. Inorg. Chem. 2011, 50, 9587–9593.

[129]

Nohra, B.; Mialane, P.; Dolbecq, A.; Rivière, E.; Marrot, J.; Sécheresse, F. Heterometallic 3d-4f cubane clusters inserted in polyoxometalate matrices. Chem. Commun. (Camb.) 2009, 2703–2705

[130]

Wang, W. D.; Li, X. X.; Fang, W. H.; Yang, G. Y. Hydrothermal synthesis and structural characterization of a new keggin-type tungstogermanate containing heterometallic 3d-4f cubane clusters. J. Cluster Sci. 2011, 22, 87–95.

[131]

Wang, Y. F.; Qin, Z. J.; Tian, Z. F.; Bai, Y.; Li, Y. M.; Zhang, Y. W.; Dang, D. B. A series of germanotungstate-based 3d-4f heterometallic compounds with visible-light induced photocatalytic, electrochemical and magnetic properties. J. Alloys Compd. 2019, 784, 961–969.

[132]

Zhao, J. W.; Shi, D. Y.; Chen, L. J.; Li, Y. Z.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Novel polyoxometalate hybrids consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. Dalton Trans. 2012, 41, 10740–10751.

[133]

Cai, J.; Zheng, X. Y.; Xie, J.; Yan, Z. H.; Kong, X. J.; Ren, Y. P.; Long, L. S.; Zheng, L. S. Anion-dependent assembly of heterometallic 3d-4f clusters based on a lacunary polyoxometalate. Inorg. Chem. 2017, 56, 8439–8445.

[134]

Li, S. R.; Wang, H. Y.; Su, H. F.; Chen, H. J.; Du, M. H.; Long, L. S.; Kong, X. J.; Zheng, L. S. A giant 3d-4f polyoxometalate super-tetrahedron with high proton conductivity. Small Methods 2021, 5, 2000777.

[135]

Wu, S. Y.; Wang, Y. J.; Jing, J. X.; Li, X. X.; Sun, Y. Q.; Zheng, S. T. Two organic-inorganic hybrid polyoxotungstogermanates containing organic ligand chelated Fe-Dy heterometallic clusters and frequency dependent magnetic properties. Inorg. Chem. Front. 2020, 7, 498–504.

[136]

Chen, Y.; Guo, Z. W.; Li, X. X.; Zheng, S. T.; Yang, G. Y. Multicomponent cooperative assembly of nanoscale boron-rich polyoxotungstates with 22 and 30 boron atoms. CCS Chem. 2022, 4, 1305–1314.

[137]

Chen, C. H.; Chen, Y.; Yao, R. Q.; Li, Y. X.; Zhang, C. X. Artificial Mn4Ca clusters with exchangeable solvent molecules mimicking the oxygen-evolving center in photosynthesis. Angew. Chem., Int. Ed. 2019, 58, 3939–3942.

[138]

Chen, Y. Z.; Liu, Z. J.; Zhang, Z. M.; Zhou, H. Y.; Zheng, X. T.; Wang, E. B. Systematic assembly of {LnMnIII4} appended cubanes with inorganic polyoxometalate ligands and their electrocatalytic property. Inorg. Chem. Commun. 2014, 46, 155–158.

[139]

Yao, R. Q.; Li, Y. X.; Chen, Y.; Xu, B. R.; Chen, C. H.; Zhang, C. X. Rare-earth elements can structurally and energetically replace the calcium in a synthetic Mn4CaO4-cluster mimicking the oxygen-evolving center in photosynthesis. J. Am. Chem. Soc. 2021, 143, 17360–17365.

[140]

Chen, L. J.; Zhang, F.; Ma, X.; Luo, J.; Zhao, J. W. Two types of novel tetra-iron substituted sandwich-type arsenotungastates with supporting lanthanide pendants. Dalton Trans. 2015, 44, 12598–12612.

[141]

Das, V.; Khan, I.; Hussain, F.; Sadakane, M.; Tsunoji, N.; Ichihashi, K.; Kato, C.; Inoue, K.; Nishihara, S. Single-molecule magnetic, catalytic and photoluminescence properties of heterometallic 3d-4f [Ln{PZn2W10O38(H2O)2}2]11− tungstophosphate nanoclusters. Eur. J. Inorg. Chem. 2021, 2021, 3819–3831.

[142]

Jiang, J.; Chen, Y. H.; Liu, L. L.; Chen, L. J.; Zhao, J. W. 2-Picolinate-decorated iron-lanthanide heterometallic germanotungstates including an S-shaped [Ge2W20O72]16− segment. Inorg. Chem. 2019, 58, 15853–15863.

[143]

Li, S. R.; Weng, Z. Z.; Jiang, L. P.; Wei, R. J.; Su, H. F.; Long, L. S.; Zheng, L. S.; Kong, X. J. A series of heterometallic 3d-4f polyoxometalates as single-molecule magnets. Chin. Chem. Lett. 2023, 34, 107251–107254.

[144]

Minato, T.; Salley, D.; Mizuno, N.; Yamaguchi, K.; Cronin, L.; Suzuki, K. Robotic stepwise synthesis of hetero-multinuclear metal oxo clusters as single-molecule magnets. J. Am. Chem. Soc. 2021, 143, 12809–12816.

[145]

Sato, R.; Suzuki, K.; Minato, T.; Yamaguchi, K.; Mizuno, N. Sequential synthesis of 3d-3d′-4f heterometallic heptanuclear clusters in between lacunary polyoxometalates. Inorg. Chem. 2016, 55, 2023–2029.

[146]

Zhu, S. L.; Xu, X.; Ou, S.; Zhao, M.; He, W. L.; Wu, C. D. Assembly of a metalloporphyrin-polyoxometalate hybrid material for highly efficient activation of molecular oxygen. Inorg. Chem. 2016, 55, 7295–7300.

[147]

Zhao, J. W.; Cao, J.; Li, Y. Z.; Zhang, J.; Chen, L. J. First tungstoantimonate-based transition-metal-lanthanide heterometallic hybrids functionalized by amino acid ligands. Cryst. Growth Des. 2014, 14, 6217–6229.

[148]

Cai, J.; Ye, R.; Liu, X. H.; Guo, L. L.; Qiao, X. R. Ionic strength effect on regulating the synthetic assembly of polyoxometalate clusters with slow magnetic relaxation behavior. Dalton Trans. 2020, 49, 16954–16961.

[149]

Das, V.; Khan, I.; Hussain, F.; Sadakane, M.; Hageo, K.; Ichihashi, K.; Inoue, K.; Nishihara, S. A self-assembled heterometallic {Co7-Ho1} nanocluster: 3d-4f trimeric keggin-type silicotungstate [HoCo7Si3W29O108(OH)5(H2O)4]18− and its catalytic and magnetic applications. Eur. J. Inorg. Chem. 2019, 2019, 430–436.

[150]

Tanuhadi, E.; Al-Sayed, E.; Novitchi, G.; Roller, A.; Giester, G.; Rompel, A. Cation-directed synthetic strategy using 4f tungstoantimonates as nonlacunary precursors for the generation of 3d-4f clusters. Inorg. Chem. 2020, 59, 8461–8467.

[151]

Gu, Y. N.; Chen, Y.; Wu, Y. L.; Zheng, S. T.; Li, X. X. A series of banana-shaped 3d-4f heterometallic cluster substituted polyoxometalates: Syntheses, crystal structures, and magnetic properties. Inorg. Chem. 2018, 57, 2472–2479.

[152]

Han, Q.; Li, Z.; Liang, X. M.; Ding, Y.; Zheng, S. T. Synthesis of a 6-nm-long transition-metal-rare-earth-containing polyoxometalate. Inorg. Chem. 2019, 58, 12534–12537.

[153]

Yao, M. Y.; Liu, Y. F.; Li, X. X.; Yang, G. P.; Zheng, S. T. The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid-base catalytic activity. Chem. Commun. (Camb.) 2022, 58, 5737–5740.

[154]

Xiao, H. P.; Zhang, R. T.; Li, Z.; Xie, Y. F.; Wang, M.; Ye, Y. D.; Sun, C.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. Organoamine-directed assembly of 5p-4f heterometallic cluster substituted polyoxometalates: Luminescence and proton conduction properties. Inorg. Chem. 2021, 60, 13718–13726.

[155]

Xu, X.; Chen, Y. H.; Zhang, Y.; Liu, Y. F.; Chen, L. J.; Zhao, J. W. Rare-earth and antimony-oxo clusters simultaneously connecting antimonotungstates comprising divacant and tetravacant keggin fragments. Inorg. Chem. 2019, 58, 11636–11648.

[156]

Li, H. L.; Xu, X.; Tang, Z. G.; Zhao, J. W.; Chen, L. J.; Yang, G. Y. Three lanthanide-functionalized antimonotungstate clusters with a {Sb4O4Ln3(H2O)8} core: Syntheses, structures, and properties. Inorg. Chem. 2021, 60, 18065–18074.

[157]

Xiao, H. P.; Hao, Y. S.; Li, X. X.; Xu, P.; Huang, M. D.; Zheng, S. T. A water-soluble antimony-rich polyoxometalate with broad-spectrum antitumor activities. Angew. Chem., Int. Ed. 2022, 61, e202210019.

[158]

Xu, X. ; Liu, X. Y. ; Wang, D. ; Liu, X. J. ; Chen, L. J. ; Zhao, J. W. {HPO3} and {WO4} simultaneously induce the assembly of tri-Ln(III)-incorporated antimonotungstates and their photoluminescence behaviors. Inorg. Chem 2021, 60, 1037–1044.

[159]

Xu, X.; Meng, R. R.; Lu, C. T.; Mei, L.; Chen, L. J.; Zhao, J. W. Acetate-decorated tri-Ln(III)-containing antimonotungstates with a tetrahedral {WO4} group as a structure-directing template and their luminescence properties. Inorg. Chem. 2020, 59, 3954–3963.

[160]

Shao, D.; Wang, X. Y. Development of single-molecule magnets. Chin. J. Chem. 2020, 38, 1005–1018.

[161]

Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Camón, A.; Evangelisti, M.; Luis, F.; Martínez-Pérez, M. J.; Sesé, J. Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: The series [LnP5W30O110]12- (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J. Am. Chem. Soc. 2012, 134, 14982–14990.

[162]

Liu, J. L.; Chen, Y. C.; Tong, M. L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47, 2431–2453.

[163]

AlDamen, M. A.; Clemente-Juan, J. M.; Coronado, E.; Martí-Gastaldo, C.; Gaita-Ariño, A. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J. Am. Chem. Soc. 2008, 130, 8874–8875.

[164]

Osamu, N.; Teruo, K.; Isao, O.; Yoshizo, M. High-conductivity solid proton conductors: Dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem. Lett. 1979, 8, 17–18.

[165]

Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 8416–8420.

Polyoxometalates
Article number: 9140022
Cite this article:
Li S-R, Liu W-D, Long L-S, et al. Recent advances in polyoxometalate-based lanthanide–oxo clusters. Polyoxometalates, 2023, 2(2): 9140022. https://doi.org/10.26599/POM.2023.9140022

15397

Views

1675

Downloads

37

Crossref

0

Scopus

Altmetrics

Received: 28 October 2022
Revised: 12 December 2022
Accepted: 21 December 2022
Published: 02 March 2023
© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return