AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Efficient Helicopter -Satellite Communication Scheme Based on Check-Hybrid LDPC Coding

Ping WangLiuguo Yin( )Jianhua Lu
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
EDA Laboratory, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
School of Information Science and Technology, Tsinghua University, Beijing 100084, China.
Show Author Information

Abstract

When implementing helicopter -satellite communications, periodical interruption of the received signal is a challenging problem because the communication antenna is intermittently blocked by the rotating blades of the helicopter. The helicopter -satellite channel model and the Forward Error Control (FEC) coding countermeasure are presented in this paper. On the basis of this model, Check-Hybrid (CH) Low-Density Parity-Check (LDPC) codes are designed to mitigate the periodical blockage over the helicopter -satellite channels. The CH-LDPC code is derived by replacing part of single parity-check code constraints in a Quasi-Cyclic LDPC (QC-LDPC) code by using more powerful linear block code constraints. In particular, a method of optimizing the CH-LDPC code ensemble by searching the best matching component code among a variety of linear block codes using extrinsic information transfer charts is proposed. Simulation results show that, the CH-LDPC coding scheme designed for the helicopter -satellite channels in this paper achieves more than 25% bandwidth efficiency improvement, compared with the FEC scheme that uses QC-LDPC codes.

References

[1]
Cid E. L., Snchez M. G., Alejos A. V., and Fernndez S. G., Measurement, characterization, and modeling of the helicopter satellite communication radio channel, IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 37763785, 2014.10.1109/TAP.2014.2317483
[2]
Reese M. S., Balanis C. A., Blncher C. R., and Barber G. C., Modeling and simulation of a helicopter-mounted satcom antenna array, IEEE Antennas and Propagation Magazine, vol. 53, no. 2, pp. 5160, 2011.10.1109/MAP.2011.5949326
[3]
Li H. B.,  Sato M.,  Miura A.,  Taira S., and  Wakana H., Ku-band helicopter satellite communications for on scene disaster information transmission, inIEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Barcelona, Spain, 2004, pp. 27922796.
[4]
 Wilcoxson D.,  Sleight B.,  O’Neill J., and  Chester D., Helicopter ku-band satcom on-the-move, in Proc. 2006 IEEE Military Communications Conference, Washington, DC, USA, 2006, pp. 17.10.1109/MILCOM.2006.302291
[5]
 O’Neill J.,  Loh A.,  Velayudhan N., and  Har-Noy S., Increased dynamic range multi-rate waveform for mobile satellite communications: Adaptive coding spreading and modulation (acsm), in Proc. 2010 IEEE Military Communications Conference, San Jose, CA, USA, 2010, pp. 357362.10.1109/MILCOM.2010.5680414
[6]
Lee L. N.,  Liau V.,  Marhefka W., and  Gopal R., Micro satellite terminal-based high data rate communication for rotary wing aircraft, in Proc. 2014 IEEE Military Communications Conference, Baltimore, MD, USA, 2014, pp. 16981703.10.1109/MILCOM.2014.279
[7]
 Eroz M., Sun F. W., and Lee L. N., An innovative low-density parity-check code design with near-shannon-limit performance and simple implementation,IEEE Transactions on Communications, vol. 54, no. 1, pp. 1317, 2006.10.1109/TCOMM.2005.861681
[8]
Tanner R. M.,  Sridhara D.,  Sridharan A., Fuja T. E., and Costello D. J., Ldpc block and convolutional codes based on circulant matrices, IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 29662984, 2004.10.1109/TIT.2004.838370
[9]
 Liu H.,  Huang Q.,  Deng G., and  Chen J., Quasi-cyclic representation and vector representation of RS-LDPC codes, IEEE Transactions on Communications, vol. 63, no. 4, pp. 10331042, 2015.10.1109/TCOMM.2015.2399395
[10]
 Yang A.,  Fei Z.,  Xing C.,  Xiao M.,  Yuan J., and  Kuang J., Design of binary network codes for multiuser multiway relay networks, IEEE Transactions on Vehicular Technology, vol. 62, no. 8, pp. 37863799, 2013.10.1109/TVT.2013.2256440
[11]
 Yue G.,  Ping L., and  Wang X., Generalized low-density parity-check codes based on Hadamard constraints, IEEE Transactions on Information Theory, vol. 53, no. 3, pp. 10581079, 2007.10.1109/TIT.2006.890694
[12]
 Li Q.,  Qu X.,  Yin L., and  Lu J., Generalized low-density parity-check coding scheme with partial-band jamming, Tsinghua Science and Technology, vol. 19, no. 2, pp. 203210, 2014.10.1109/TST.2014.6787374
[13]
Gou X. G., Qiu J. H., and Jiang H. J., Research on antenna blockage from rotor in helicopter satellite communication, (in Chinese), Radio Communications Technology, vol. 39, no. 1, pp. 5558, 2013.
[14]
Williams F. J. M. and Sloane N. J. A., The Theory of Error-Correcting Codes. New York, NY, USA: North-Holland Publishing Company, 1981, pp. 2627.
[15]
 Ashikhmin A. and  Litsyn S., Simple MAP decoding of first-order Reed-muller and Hamming codes, IEEE Transactions on Information Theory, vol. 50, no. 8, pp. 18121818, 2004.10.1109/TIT.2004.831835
[16]
 Ge G. and  Yin L., LDPC coding scheme for improving the reliability of multi-level-cell nand flash memory in radiation environments, China Communications, vol. 14, no. 8, pp. 1021, 2017.10.1109/CC.2017.8014343
[17]
 Ashikhmin A.,  Kramer G., and  ten Brink S., Extrinsic information transfer functions: Model and erasure channel properties, IEEE Transactions on Information Theory, vol. 50, no. 11, pp. 26572673, 2004.10.1109/TIT.2004.836693
[18]
 Sharon E.,  Ashikhmin A., and  Litsyn S., Exit functions for binary input memoryless symmetric channels, IEEE Transactions on Communications, vol. 54, no. 7, pp. 12071214, 2006.10.1109/TCOMM.2006.877956
[19]
Hu X. Y.,  Eleftheriou E., and Arnold D. M., Regular and irregular progressive edge-growth tanner graphs, IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 386398, 2005.10.1109/TIT.2004.839541
Tsinghua Science and Technology
Pages 323-332
Cite this article:
Wang P, Yin L, Lu J. Efficient Helicopter -Satellite Communication Scheme Based on Check-Hybrid LDPC Coding. Tsinghua Science and Technology, 2018, 23(3): 323-332. https://doi.org/10.26599/TST.2018.9010038

640

Views

65

Downloads

21

Crossref

N/A

Web of Science

24

Scopus

5

CSCD

Altmetrics

Received: 03 November 2017
Accepted: 27 November 2017
Published: 02 July 2018
© The author(s) 2018
Return