AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Quantum-Inspired Sensitive Data Measurement and Secure Transmission in 5G-Enabled Healthcare Systems

The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
Faculty of Computers and Information Technology, University of Tabuk, Tabuk 47512, Saudi Arabia
Koszalin University of Technology, Koszalin 75453, Poland
Show Author Information

Abstract

The exponential advancement witnessed in 5G communication and quantum computing has presented unparalleled prospects for safeguarding sensitive data within healthcare infrastructures. This study proposes a novel framework for healthcare applications that integrates 5G communication, quantum computing, and sensitive data measurement to address the challenges of measuring and securely transmitting sensitive medical data. The framework includes a quantum-inspired method for quantifying data sensitivity based on quantum superposition and entanglement principles and a delegated quantum computing protocol for secure data transmission in 5G-enabled healthcare systems, ensuring user anonymity and data confidentiality. The framework is applied to innovative healthcare scenarios, such as secure 5G voice communication, data transmission, and short message services. Experimental results demonstrate the framework’s high accuracy in sensitive data measurement and enhanced security for data transmission in 5G healthcare systems, surpassing existing approaches.

References

[1]

S. Islam, A. K. Budati, M. K. Hasan, S. B. Goyal, and A. Khanna, Performance analysis of video data transmission for telemedicine applications with 5G enabled Internet of Things, Comput. Electr. Eng., vol. 108, p. 108712, 2023.

[2]
J. Q. He, W. Liang, O. Hosam, M. Y. Hsieh, and X. Su, 5GSS: A framework for 5G-secure-smart healthcare monitoring, Conn. Sci., vol. 34, no. 1, pp. 139–161, 2022.
[3]
I. H. Liu, M. H. Lee, H. C. Huang, and J. S. Li, 5G-Based Smart Healthcare and Mobile Network Security: Combating Fake Base Stations, Appl. Sci. (Basel ), vol. 13, no. 20, p. 11565, 2023.
[4]

A. Sabban, Wearable circular polarized antennas for health care, 5G, energy harvesting, and IoT systems, Electronics, vol. 11, no. 3, p. 427, 2022.

[5]

A. H. Sharmila and N. Jaisankar, Edge Intelligent Agent Assisted Hybrid Hierarchical Blockchain for continuous healthcare monitoring & recommendation system in 5G WBAN-IoT, Comput. Netw., vol. 200, p. 108508, 2021.

[6]

J. Lee and S. J. Choi, Hospital productivity after data breaches: difference-in-differences analysis, J. Med. Internet Res., vol. 23, no. 7, p. e26157, 2021.

[7]

D. Dolezel, B. Beauvais, P. S. Granados, L. Fulton, and C. S. Kruse, Effects of internal and external factors on hospital data breaches: Quantitative study, J. Med. Internet Res., vol. 25, p. e51471, 2023.

[8]

D. Jaschke and S. Montangero, Is quantum computing green? An estimate for an energy-efficiency quantum advantage, Quantum Sci. Technol., vol. 8, no. 2, p. 025001, 2023.

[9]

R. Rietsche, C. Dremel, S. Bosch, L. Steinacker, M. Meckel, and J. M. Leimeister, Quantum computing, Electron. Mark., vol. 32, no. 4, pp. 2525–2536, 2022.

[10]
T. Asselmeyer-Maluga, 3D topological quantum computing, Int. J. Quantum Inf., vol. 19, no. 04, p. 2141005, 2021.
[11]

C. G. Wang and A. Rahman, Quantum-enabled 6G wireless networks: opportunities and challenges, IEEE Wirel. Commun., vol. 29, no. 1, pp. 58–69, 2022.

[12]
P. Wright, C. White, R. C. Parker, J. S. Pegon, M. Menchetti, J. Pearse, A. Bahrami, A. Moroz, A. Wonfor, R. V. Penty, T. P. Spiller, and A. Lord, 5G network slicing with QKD and quantum-safe security, J. Opt. Commun. Netw., vol. 13, no. 3, pp. 33–40, 2021.
[13]

L. Aggarwal, S. Sachdeva, and P. Goswami, Quantum healthcare computing using precision based granular approach, Appl. Soft Comput., vol. 144, p. 110458, 2023.

[14]

S. Gupta, S. Modgil, P. C. Bhatt, C. J. C. Jabbour, S. Kamble, Quantum computing led innovation for achieving a more sustainable Covid-19 healthcare industry, Technovation, vol. 120, p. 102544, 2023.

[15]

M. Bhavin, S. Tanwar, N. Sharma, S. Tyagi, and N. Kumar, Blockchain and quantum blind signature-based hybrid scheme for healthcare 5.0 applications, J. Inf. Secur. Appl., vol. 56, p. 102673, 2021.

[16]

M. Munshi, R. Gupta, N. K. Jadav, Z. Polkowski, S. Tanwar, F. Alqahtani, W. Said, Quantum machine learning-based framework to detect heart failures in Healthcare 4.0, Softw. - Pract. Exp., vol. 54, no. 2, pp. 168–185, 2024.

[17]
Z. G. Qu and H. R. Sun, A secure information transmission protocol for healthcare cyber based on quantum image expansion and grover search algorithm, IEEE Trans. Netw. Sci. Eng., vol. 10, no. 5, pp. 2551–2563, 2023.
[18]
P. Sarosh, S. A. Parah, G. M. Bhat, and K. Muhammad, A security management framework for big data in smart healthcare, Big Data Res., vol. 25, p. 100225, 2021.
[19]

F. Khan, B. V. V. S. Prasad, S. A. Syed, I. Ashraf, and L. K. Ramasamy, An efficient, ensemble-based classification framework for big medical data, Big Data, vol. 10, no. 2, pp. 151–160, 2022.

[20]

S. M. Nagarajan, G. G. Deverajan, U. Kumaran, M. Thirunavukkarasan, M. D. Alshehri, and S. Alkhalaf, Secure Data Transmission in Internet of Medical Things Using RES-256 Algorithm, IEEE Trans. Ind. Inform., vol. 18, no. 12, pp. 8876–8884, 2022.

[21]

A. Ullah, M. Azeem, H. Ashraf, A. A. Alaboudi, M. Humayun, and N. Z. Jhanjhi, Secure Healthcare Data Aggregation and Transmission in IoT-a survey, IEEE Access, vol. 9, pp. 16849–16865, 2021.

[22]

V. S. Marichamy and V. Natarajan, Blockchain based securing medical records in big data analytics, Data Knowl. Eng., vol. 144, p. 102122, 2023.

[23]

M. Soni and D. K. Singh, Privacy-preserving secure and low-cost medical data communication scheme for smart healthcare, Comput. Commun., vol. 194, pp. 292–300, 2022.

[24]
M. R. Patruni and A. G. Humayun, PPAM-mIoMT: A privacy-preserving authentication with device verification for securing healthcare systems in 5G networks, Int. J. Inf. Secur., vol. 23, no. 1, pp. 679–698, 2024.
[25]
P. I. Tebe, G. J. Wen, J. Li, Y. J. Yang, W. H. Tian, J. Chong, and W. J. Zhang, 5G-enabled medical data transmission in mobile hospital systems, IEEE Internet Things J., vol. 9, no. 15, pp. 13679–13693, 2022.
[26]

A. H. Almulihi, F. Alassery, A. I. Khan, S. Shukla, B. K. Gupta, and R. Kumar, Analyzing the implications of healthcare data breaches through computational technique, Intell. Autom. Soft Comput., vol. 32, no. 3, pp. 1763–1779, 2022.

[27]

Y. Qian, Y. Jiang, J. Chen, Y. Zhang, J. Song, M. Zhou, and M. Pustisek, Towards decentralized IoT security enhancement: A blockchain approach, Comput. Electr. Eng., vol. 72, pp. 266–273, 2018.

[28]

M. Elhoseny and K. Shankar, Reliable data transmission model for mobile ad hoc network using signcryption technique, IEEE Trans. Reliab., vol. 69, no. 3, pp. 1077–1086, 2020.

[29]

Y. Yang, X. Zheng, W. Guo, X. Liu, and V. Chang, Privacy-preserving smart IoT-based healthcare big data storage and self-adaptive access control system, Inf. Sci., vol. 479, pp. 567–592, 2019.

[30]

P. K. Bishoyi and S. Misra, Enabling green mobile-edge computing for 5G-based healthcare applications, IEEE Trans. Green Commun. Netw., vol. 5, no. 3, pp. 1623–1631, 2021.

[31]

M. S. Hossain and G. Muhammad, Emotion-aware connected healthcare big data towards 5G, IEEE Internet Things J., vol. 5, no. 4, pp. 2399–2406, 2018.

[32]
X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, When machine learning meets blockchain: A decentralized, privacy-preserving and secure design, in Proc. IEEE Int. Conf. Big Data, Seattle, WA, USA, 2018, pp. 1178–1187.
[33]

J. Li, J. Wu, G. Jiang, and T. Srikanthan, Blockchain-based public auditing for big data in cloud storage, Inf. Process. Manag., vol. 57, no. 6, p. 102382, 2020.

[34]
M. Fujiwara, H. Hashimoto, K. Doi, M. Kujiraoka, Y. Tanizawa, Y. Ishida, M. Sasaki, and M. Nagasaki, Secure secondary utilization system of genomic data using quantum secure cloud, Sci. Rep., vol. 12, no. 1, p. 18530, 2022.
[35]

T. Attema, J. W. Bosman, and N. M. P. Neumann, Optimizing the decoy-state BB84 QKD protocol parameters, Quantum Inf. Process., vol. 20, no. 4, p. 154, 2021.

[36]

Y. J. Zhang, T. Shang, and J. W. Liu, A multi-valued quantum fully homomorphic encryption scheme, Quantum Inf. Process., vol. 20, no. 3, p. 101, 2021.

[37]

W. Shen, G. Wu, L. J. Li, H. Li, S. Liu, S. N. Shen, and D. W. Zou, Fluorine-terminated diamond (110) surfaces for nitrogen-vacancy quantum sensors, Carbon, vol. 193, pp. 17–25, 2022.

[38]
P. Chinnasamy and P. Deepalakshmi, HCAC-EHR: Hybrid cryptographic access control for secure EHR retrieval in Healthcare cloud, J. Ambient Intell. Humaniz. Comput., vol. 13, no. 2, pp. 1001–1019, 2022.
[39]

F. Mohsen, H. Ali, N. El Hajj, and Z. Shah, Artificial intelligence-based methods for fusion of electronic health records and imaging data, Sci. Rep., vol. 12, no. 1, p. 17981, 2022.

[40]
C. P. Da Silva, S. Tedesco, and B. O'Flynn, EEG datasets for healthcare: A scoping review, IEEE Access, vol. 12, pp. 39186−39203, 2024.
[41]

B. C. Tan and A. O. Cong, Optimality study of existing quantum computing layout synthesis tools, IEEE Trans. Comput., vol. 70, no. 9, pp. 1363–1373, 2021.

[42]
R. Jiang, Y. Xin, H. P. Cheng, and W. X. Wu, T-RBAC model based on two-dimensional dynamic trust evaluation under medical big data, Wirel. Commun. Mob. Comput., vol. 2021, p. 9957214, 2021.
[43]

H. Saxton, T. Schenkel, I. Halliday, and X. Xu, Personalised parameter estimation of the cardiovascular system: Leveraging data assimilation and sensitivity analysis, J. Comput. Sci., vol. 74, p. 102158, 2023.

[44]

W. J. Wu, L. Z. Gu, Y. F. Zhang, X. P. Huang, and W. H. Zhou, Pulmonary nodule clinical trial data collection and intelligent differential diagnosis for medical internet of things, Contrast Media Mol. Imaging, vol. 2022, p. 2058284, 2022.

[45]

Y. J. Qiu and J. Lu, A visualization algorithm for medical big data based on deep learning, Measurement, vol. 183, p. 109808, 2021.

Tsinghua Science and Technology
Pages 456-478
Cite this article:
Lv X, Rani S, Manimurugan S, et al. Quantum-Inspired Sensitive Data Measurement and Secure Transmission in 5G-Enabled Healthcare Systems. Tsinghua Science and Technology, 2025, 30(1): 456-478. https://doi.org/10.26599/TST.2024.9010122

259

Views

78

Downloads

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 April 2024
Revised: 24 June 2024
Accepted: 29 June 2024
Published: 11 September 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return