Sort:
Open Access Issue
Q-learning Based Meta-Heuristics for Scheduling Bi-Objective Surgery Problems with Setup Time
Complex System Modeling and Simulation 2024, 4(4): 321-338
Published: 30 December 2024
Abstract PDF (2.2 MB) Collect
Downloads:2

Since the increasing demand for surgeries in hospitals, the surgery scheduling problems have attracted extensive attention. This study focuses on solving a surgery scheduling problem with setup time. First, a mathematical model is created to minimize the maximum completion time (makespan) of all surgeries and patient waiting time, simultaneously. The time by the fatigue effect is included in the surgery time, which is caused by doctors’ long working time. Second, four mate-heuristics are optimized to address the relevant problems. Three novel strategies are designed to improve the quality of the initial solutions. To improve the convergence of the algorithms, seven local search operators are proposed based on the characteristics of the surgery scheduling problems. Third, Q-learning is used to dynamically choose the optimal local search operator for the current state in each iteration. Finally, by comparing the experimental results of 30 instances, the Q-learning based local search strategy’s effectiveness is verified. Among all the compared algorithms, the improved artificial bee colony (ABC) with Q-learning based local search has the best competitiveness.

Open Access Issue
Quantum-Inspired Sensitive Data Measurement and Secure Transmission in 5G-Enabled Healthcare Systems
Tsinghua Science and Technology 2025, 30(1): 456-478
Published: 11 September 2024
Abstract PDF (3.4 MB) Collect
Downloads:78

The exponential advancement witnessed in 5G communication and quantum computing has presented unparalleled prospects for safeguarding sensitive data within healthcare infrastructures. This study proposes a novel framework for healthcare applications that integrates 5G communication, quantum computing, and sensitive data measurement to address the challenges of measuring and securely transmitting sensitive medical data. The framework includes a quantum-inspired method for quantifying data sensitivity based on quantum superposition and entanglement principles and a delegated quantum computing protocol for secure data transmission in 5G-enabled healthcare systems, ensuring user anonymity and data confidentiality. The framework is applied to innovative healthcare scenarios, such as secure 5G voice communication, data transmission, and short message services. Experimental results demonstrate the framework’s high accuracy in sensitive data measurement and enhanced security for data transmission in 5G healthcare systems, surpassing existing approaches.

Total 2