AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Low-Friction Soft Robots for Targeted Bacterial Infection Treatment in Gastrointestinal Tract

Ben Wang1( )Yunrui Chen1Zhicheng Ye1Haidong Yu2Kai Fung Chan3( )Tiantian Xu4,5( )Zhiguang Guo6,7( )Weimin Liu7Li Zhang8,9
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
Show Author Information

Abstract

Untethered and self-transformable miniature robots are capable of performing reconfigurable deformation and on-demand locomotion, which aid the traversal toward various lumens, and bring revolutionary changes for targeted delivery in gastrointestinal (GI) tract. However, the viscous non-Newtonian liquid environment and plicae gastricae obstacles severely hamper high-precision actuation and payload delivery. Here, we developed a low-friction soft robot by assembly of densely arranged cone structures and grafting of hydrophobic monolayers. The magnetic orientation encoded robot can move in multiple modes, with a substantially reduced drag, terrain adaptability, and improved motion velocity across the non-Newtonian liquids. Notably, the robot stiffness can be reversibly controlled with magnetically induced hardening, enabling on-site scratching and destruction of antibiotic-ineradicable polymeric matrix in biofilms with a low-frequency magnetic field. Furthermore, the magnetocaloric effect can be utilized to eradicate the bacteria by magnetocaloric effect under high-frequency alternating field. To verify the potential applications inside the body, the clinical imaging-guided actuation platforms were developed for vision-based control and delivery of the robots. The developed low-friction robots and clinical imaging-guided actuation platforms show their high potential to perform bacterial infection therapy in various lumens inside the body.

References

1

Zhao X, Kim Y. Soft microbots programmed by nanomagnets. Nature. 2019;575(7781):58–59.

2

Sitti M. Miniature soft robots—Road to the clinic. Nat Rev Mater. 2018;3:74.

3

Medina-Sánchez M, Schmidt O. Medical microbots need better imaging and control. Nature. 2017;545(7655):406.

4

Li T, Mao C, Shen J, Zhou M. Three laws of design for biomedical micro/nanorobots. Nano Today. 2022;45:Article 101560.

5

Lin Z, Gao C, Wang D, He Q. Bubble-propelled Janus gallium/zinc micromotors for the active treatment of bacterial infections. Angew Chem Int Ed. 2021;60(16):8750.

6

Cai L, Zhao C, Chen H, Fan L, Zhao Y, Qian X, Chai R. Suction-cup-inspired adhesive micromotors for drug delivery. Adv Sci. 2022;9(1):2103384.

7

Mundaca-Uribe R, Karshalev E, Esteban-Fernández de Ávila B, Wei X, Nguyen B, Litvan I, Fang R, Zhang L, Wang J. A microstirring pill enhances bioavailability of orally administered drugs. Adv Sci. 2021;8(12):2100389.

8

Liu X, Yang Y, Inda M, Lin S, Wu J, Kim Y, Chen X, Ma D, Lu T, Zhao X. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv Funct Mater. 2021;31(27):2010918.

9

Zhang X, Chen G, Fu X, Wang Y, Zhao Y. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv Mater. 2021;33(44):2104932.

10

Zhou M, Hou T, Li J, Yu S, Xu Z, Yin M, Wang J, Wang X. Self-propelled and targeted drug delivery of poly (aspartic acid)/iron-zinc microrocket in the stomach.ACS Nano. 2019;13(2):1324.

11

Soto F, Wang J, Ahmed R, Demirci U. Medical micro/nanorobots in precision medicine. Adv Sci. 2020;7(21):2002203.

12

Choi J, Hwang J, Kim J-Y, Choi H. Recent progress in magnetically actuated microrobots for targeted delivery of therapeutic agents. Adv Healthc. 2021;10(6):2001596.

13

Zhang F, Li Z, Duan Y, Abbas A, Mundaca-Uribe R, Yin L, Luan H, Gao W, Fang R, Zhang L, et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Sci Robot. 2022;7(70): eabo4160.

14

Wang B, Chan K, Yu J, Wang Q, Yang L, Chiu P, Zhang L. Reconfigurable swarms of ferromagnetic colloids for enhanced local hyperthermia. Adv Funct Mater. 2018;28:1705701.

15

Zhong D, Zhang D, Chen W, He J, Ren C, Zhang X, Kong N, Tao W, Zhou M. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci Adv. 2021;7(48):eabi9265.

16

Dong Y, Wang L, Zhang Z, Ji F, Chan TKF, Yang H, Chan CPL, Yang Z, Chen Z, Chang W, et al. Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. Sci Adv. 2022;8(40):abq8573.

17

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313.

18

Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for targeted delivery and therapy in digestive system. ACS Nano. 2023;17(1):27–50.

19

Dong Y, Wang L, Yuan K, Ji F, Gao J, Zhang Z, Du X, Tian Y, Wang Q, Zhang L. Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion. ACS Nano. 2021;15(3):5056–5067.

20
You M, Mukasa D, Gao W. Microrobots in the gastrointestinal tract. In: Sun Y, Wang X, Yu J. editors. Field-driven micro and nanorobots for biology and medicine. Cham: Springer; 2022. p. 349–367.
21

Nam J, Lai Y, Gauthier L, Jang G, Diller E. Resonance-based design of wireless magnetic capsule for effective sampling of microbiome in gastrointestinal tract. Sens Actuator A Phys. 2022;342:Article 113654.

22

Mostaghaci B, Yasa O, Zhuang J, Sitti M. Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Adv Sci. 2017;4(6):1700058.

23

Zhang L, Zhao S, Zhou X, Jing X, Zhou Y, Wang Y, Zhu Y, Liu X, Zhao Z, Zhang D, et al. A magnetic-driven multi-motion robot with position/orientation sensing capability. Research. 2023;6:0177.

24

Huang C, Lai Z, Wu X, Xu T. Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. Cyborg Bionic Syst. 2022;2022:0004.

25

Peng Q, Wang S, Han J, Huang C, Yu H, Li D, Qiu M, Cheng S, Wu C, Cai M, et al. Thermal and magnetic dual-responsive catheter-assisted shape memory microrobots for multistage vascular embolization. Research. 2024;7:0339.

26

Xu T, Huang C, Lai Z, Wu X. Independent control strategy of multiple magnetic flexible millirobots for position control and path following. IEEE Trans Robot. 2022;2023(38):2875–2887.

27

Hörter D, Dressman J. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1-3):75–87.

28

Walker D, Käsdorf B, Jeong H, Lieleg O, Fischer P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv. 2015;1(11):Article e1500501.

29

Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv Mater. 2021;33(6):2000512.

30

Wang B, Kostarelos K, Nelson BJL, Zhang L. Trends in micro-/nanorobotics: Materials development, actuation, localization, and system integration for biomedical applications. Adv Mater. 2021;33(4):2002047.

31

Wang B, Handschuh-Wang S, Shen J, Zhou X, Guo Z, Liu W, Pumera M, Zhang L. Small-scale robotics with tailored wettability. Adv Mater. 2022;35(18):2205732.

32

Chen X, Hoop M, Mushtaq F, Siringil E, Hu C, Nelson B, Pané S. Recent developments in magnetically driven micro-and nanorobots. Appl Mater Today. 2017;9:37.

33

Wu Z, Chen Y, Mukasa D, Pak O, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev. 2020;49(22):8088.

34

Wu Z, Li L, Yang Y, Hu P, Li Y, Yang S, Wang L, Gao W. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 2019;4(32):eaax0613.

35

Wang B, Wang Q, Chan KF, Ning Z, Wang Q, Ji F, Yang H, Jiang S, Zhang Z, Ip B, et al. tPA-anchored nanorobots for in-vivo arterial recanalization at sub-millimeter scale segments. Sci Adv. 2024;10(5):adk8970.

36

Ye Z, Zheng L, He J, Lin J, Chen Y, Yu H, Wang Y, Zhong W, Handschuh-Wang S, Niu S, et al. Liquid-metal soft electronics coupled with multi-legged robots for targeted delivery in the gastrointestinal tract. Device 2024;2:Article 100181.

37

Lu H, Zhang M, Yang Y, Huang Q, Fukuda T, Wang Z, Shen Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun. 2018;9(1):3944.

38

Gu H, Boehler Q, Cui H, Secchi E, Savorana G, De Marco C, Gervasoni S, Peyron Q, Huang T-Y, Pane S, et al. Magnetic cilia carpets with programmable metachronal waves. Nat Commun. 2020;11(1):2637.

39

Wang B, Chan KF, Yuan K, Wang Q, Xia X, Yang L, Ko H, Wang Y, Sung JJY, Chiu PWY, et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Robot. 2021;6(52):eabd2813.

40

Ji F, Li T, Yu S, Wu Z, Zhang L. Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors. ACS Nano. 2021;15(3):5118–5128.

41

Zhang W, Deng Y, Zhao J, Zhang T, Zhang X, Song W, Wang L, Li T. Amoeba-inspired magnetic venom microrobots. Small. 2023;19(23):2207360.

42

Yu S, Li T, Ji F, Zhao S, Liu K, Zhang Z, Zhang W, Mei Y. Trimer-like microrobots with multimodal locomotion and reconfigurable capabilities. Mater Today Adv. 2022;14:Article 100231.

43

Li T, Yu S, Sun B, Li Y, Wang X, Pan Y, Song C, Ren Y, Zhang Z, Grattan KTV, et al. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci Adv. 2023;9(18):eadg4501.

44

Velev OD, Prevo BG, Bhatt K. On-chip manipulation of free droplets. Nature. 2003;426(6966):515.

45

Gao X, Jiang L. Water-repellent legs of water striders. Nature. 2004;432:36.

46

Yu H, Han Z, Zhang J, Zhang S. Bionic design of tools in cutting: Reducing adhesion, abrasion or friction. Wear. 2021;482–483:Article 203955.

47
Jiang L, Feng L. Bioinspired intelligent nanostructured interfacial materialsBeijing: World Scientific Publishing Co. Pte. Ltd. and Chemical Industry Press; 2010. p. 109–110.
48

Stanton M, Park B, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S. Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano. 2017;11(10):9968–9978.

49

Motta J, Wallace J, Buret A, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(5):314–334.

50

Timonen J, Latikka M, Leibler L, Ras R, Ikkala O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science. 2013;341(6143):253–257.

Cyborg and Bionic Systems
Article number: 0138
Cite this article:
Wang B, Chen Y, Ye Z, et al. Low-Friction Soft Robots for Targeted Bacterial Infection Treatment in Gastrointestinal Tract. Cyborg and Bionic Systems, 2024, 5: 0138. https://doi.org/10.34133/cbsystems.0138

90

Views

0

Downloads

4

Crossref

5

Web of Science

5

Scopus

Altmetrics

Received: 31 March 2024
Accepted: 15 May 2024
Published: 05 July 2024
© 2024 Ben Wang et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return