AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unraveling Electrochemical Stability and Reversible Redox of Y-Doped Li2ZrCl6 Solid Electrolytes

Shuai Chen1,2Chuang Yu1( )Chaochao Wei1Ziling Jiang1Ziqi Zhang1Linfeng Peng1Shijie Cheng1Jia Xie1( )
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Show Author Information

Abstract

Lithium halide electrolytes show great potential in constructing high-energy-density solid-state batteries with high-voltage cathode materials due to their high electrochemical stability and wide voltage windows. However, the high cost and low conductivity of some compositions inhibit their applications. Moreover, the effect of electronic additives in the cathode mixture on the stability and capacity is unclear. Here, the Y3+ doping strategy is applied to enhance the conductivity of low-cost Li2ZrCl6 electrolytes. By tailoring the Y3+ dopant in the structure, the optimal Li2.5Zr0.5Y0.5Cl6 with high conductivity up to 1.19 × 10−3 S cm−1 is obtained. Li2.5Zr0.5Y0.5Cl6@CNT/Li2.5Zr0.5Y0.5Cl6/Li5.5PS4.5Cl1.5/In-Li solid-state batteries with different carbon nanotube (CNT) contents in the cathode are fabricated. The stability and electrochemical performances of the cathode mixture as a function of CNT content are studied. The cathode mixture containing 2% (wt.) CNT exhibits the highest stability and almost no discharge capacity, while the cathode mixture consisting of Li2.5Zr0.5Y0.5Cl6 and 10% (wt.) CNT delivers a high initial discharge capacity of 199.0 mAh g−1 and reversible capacities in the following 100 cycles. Multiple characterizations are combined to unravel the working mechanism and confirm that the electrochemical reaction involves the 2-step reaction of Y3+/Y0, Zr4+/Zr0, and Cl/Clx in the Li2.5Zr0.5Y0.5Cl6 electrolyte. This work provides insight into designing a lithium halide electrolyte-based cathode mixture with a high ionic/electronic conductive framework and good interfacial stability for solid-state batteries.

References

1

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–367.

2

Zhao Y, Zheng K, Sun X. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule. 2018;2(12):2583–2604.

3

Janek J, Zeier WG. A solid future for battery development. Nat Energy. 2016;1(9):16141.

4

Dong L, Zhong S, Yuan B, Ji Y, Liu J, Liu Y, Yang C, Han J, He W. Electrolyte engineering for high-voltage lithium metal batteries. Research. 2022;2022:9837586.

5

Guo Y, Wu S, He Y-B, Kang F, Chen L, Li H, Yang Q-H. Solid-state lithium batteries: Safety and prospects. eScience. 2022;2(2):138–163.

6

Zhang K, Wu F, Wang X, Weng S, Yang X, Zhao H, Guo R, Sun Y, Zhao W, Song T, et al. 8.5 μm-Thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv Energy Mater. 2022;12(24):2200368.

7

Zhang K, Wu F, Wang X, Zheng L, Yang X, Zhao H, Sun Y, Zhao W, Bai Y, Wu C. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv Funct Mater. 2022;32(5):2107764.

8

Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg Chem. 2016;55(6):2941–2945.

9

Guo Q, Xu F, Shen L, Deng S, Wang Z, Li M, Yao X. 20μm-Thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mater Adv. 2022;2022:9753506.

10

Minami T, Hayashi A, Tatsumisago M. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ion. 2006;177(26):2715–2720.

11

Yang M, Chen L, Li H, Wu F. Air/water stability problems and solutions for lithium batteries. Energy Mater Adv. 2022;2022:9842651.

12

Wang Y, Wang Z, Wu D, Niu Q, Lu P, Ma T, Su Y, Chen L, Li H, Wu F. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience. 2022;2(5):537–545.

13

Lu P, Liu L, Wang S, Xu J, Peng J, Yan W, Wang Q, Li H, Chen L, Wu F. Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv Mater. 2021;33(32):2100921.

14

Lutz HD, Schmidt W, Haeuseler H. Phase relationships of the lithium halide spinels Li2MCl4-Li2MBr4 with M = Mn, Fe, Cd. J Solid State Chem. 1985;56(1):21–25.

15

Lapp T, Skaarup S, Hooper A. Ionic conductivity of pure and doped Li3N. Solid State Ion. 1983;11(2):97–103.

16

Wang S, Wu Y, Ma T, Chen L, Li H, Wu F. Thermal stability between sulfide solid electrolytes and oxide cathode. ACS Nano. 2022;16(10):16158–16176.

17

Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough JB. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chem Mater. 2016;28(21):8051–8059.

18

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, et al. A lithium superionic conductor. Nat Mater. 2011;10(9):682–686.

19

Peng L, Ren H, Zhang J, Chen S, Yu C, Miao X, Zhang Z, He Z, Yu M, Zhang L, et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Stor. Mater. 2021;43:53–61.

20

Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A. 2016;4(9):3253–3266.

21

Xie J, Sendek AD, Cubuk ED, Zhang X, Lu Z, Gong Y, Wu T, Shi F, Liu W, Reed EJ, et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano. 2017;11(7):7019–7027.

22

Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv Mater. 2018;30(44):1803075.

23

Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ Sci. 2019;12(9):2665–2671.

24

Kim SY, Kaup K, Park K-H, Assoud A, Zhou L, Liu J, Wu X, Nazar LF. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Mater Lett. 2021;3(7):930–938.

25

Park J, Han D, Kwak H, Han Y, Choi YJ, Nam KW, Jung YS. Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3-xYb1-xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. Chem Eng J. 2021;425:130630.

26

Kwak H, Han D, Son JP, Kim JS, Park J, Nam K-W, Kim H, Jung YS. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications. Chem Eng J. 2022;437:135413.

27

Chen S, Yu C, Chen S, Peng L, Liao C, Wei C, Wu Z, Cheng S, Xie J. Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping. Chin Chem Lett. 2022;33(10):4635–4639.

28

Liu Z, Ma S, Liu J, Xiong S, Ma Y, Chen H. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett. 2021;6(1):298–304.

29

Zhou L, Zuo T-T, Kwok CY, Kim SY, Assoud A, Zhang Q, Janek J, Nazar LF. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat Energy. 2022;7(1):83–93.

30

Kwak H, Han D, Lyoo J, Park J, Jung SH, Han Y, Kwon G, Kim H, Hong S-T, Nam K-W, et al. New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv Energy Mater. 2021;11(12):2003190.

31

Chen S, Yu C, Wei C, Peng L, Cheng S, Xie J. Revealing milling durations and sintering temperatures on conductivity and battery performances of Li2.25Zr0.75Fe0.25Cl6 electrolyte. Chin Chem Lett 2022.

32

Schwietert TK, Arszelewska VA, Wang C, Yu C, Vasileiadis A, de Klerk NJJ, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder EM, Ganapathy S, Wagemaker M. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat Mater. 2020;19(4):428–435.

33

Yu C, Hageman J, Ganapathy S, van Eijck L, Zhang L, Adair KR, Sun X, Wagemaker M. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li–S batteries. J Mater Chem A. 2019;7(17):10412–10421.

34

Kim K, Park D, Jung H-G, Chung KY, Shim JH, Wood BC, Yu S. Material design strategy for halide solid electrolytes Li3MX6 (X = Cl, Br, and I) for all-solid-state high-voltage Li-ion batteries. Chem Mater. 2021;33(10):3669–3677.

35

Xu G, Luo L, Liang J, Zhao S, Yang R, Wang C, Yu T, Wang L, Xiao W, Wang J, et al. Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy. 2022;92:106674.

36

Shao Q, Yan C, Gao M, Du W, Chen J, Yang Y, Gan J, Wu Z, Sun W, Jiang Y, et al. New insights into the effects of Zr substitution and carbon additive on Li3–xEr1–xZrxCl6 halide solid electrolytes. ACS Appl Mater Interfaces. 2022;14(6):8095–8105.

37

Yu C, van Eijck L, Ganapathy S, Wagemaker M. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta. 2016;215:93–99.

38

Wan TH, Saccoccio M, Chen C, Ciucci F. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim Acta. 2015;184:483–499.

39

Wang K, Ren Q, Gu Z, Duan C, Wang J, Zhu F, Fu Y, Hao J, Zhu J, He L, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat Commun. 2021;12(1):4410.

40

Liu Y, Wang S, Nolan AM, Ling C, Mo Y. Tailoring the cation lattice for chloride lithium-ion conductors. Adv Energy Mater. 2020;10(40):2002356.

41

Peng L, Yu C, Zhang Z, Ren H, Zhang J, He Z, Yu M, Zhang L, Cheng S, Xie J. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chem Eng J. 2022;430:132896.

42

Riegger LM, Schlem R, Sann J, Zeier WG, Janek J. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew Chem Int Ed. 2021;60(12):6718–6723.

43

Yang C, Chen J, Ji X, Pollard TP, Lü X, Sun C-J, Hou S, Liu Q, Liu C, Qing T, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature. 2019;569(7755):245–250.

44

Wang S, Bai Q, Nolan AM, Liu Y, Gong S, Sun Q, Mo Y. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew Chem Int Ed. 2019;58(24):8039–8043.

45

Zhao X, Wang Y, Shi Y, Yan X, Tian Y, Zuo Z, Yang X. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 2021;6(3):1134–1140.

46

Schichlein H, Müller AC, Voigts M, Krügel A, Ivers-Tiffée E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem. 2002;32(8):875–882.

47

Lu Y, Zhao C-Z, Huang J-Q, Zhang Q. The void formation behaviors in working solid-state Li metal batteries. Joule. 2022;6(6):1172–1198.

48

Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber DA, Sann J, Zeier WG, Janek J. (Electro)chemical expansion during cycling: Monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A. 2017;5(20):9929–9936.

49

Chun S-E, Evanko B, Wang X, Vonlanthen D, Ji X, Stucky GD, Boettcher SW. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat Commun. 2015;6(1):7818.

50

Zhang Q, Zhou Y, Dai W, Cui X, Lyu Z, Hu Z, Chen W. Chloride ion as redox mediator in reducing charge overpotential of aprotic lithium-oxygen batteries. Batteries Supercaps. 2021;4(1):232–239.

Energy Material Advances
Article number: 0019
Cite this article:
Chen S, Yu C, Wei C, et al. Unraveling Electrochemical Stability and Reversible Redox of Y-Doped Li2ZrCl6 Solid Electrolytes. Energy Material Advances, 2023, 4: 0019. https://doi.org/10.34133/energymatadv.0019

72

Views

2

Downloads

61

Crossref

59

Web of Science

46

Scopus

0

CSCD

Altmetrics

Received: 20 January 2023
Accepted: 08 February 2023
Published: 15 March 2023
© 2023 Shuai Chen et al. Exclusive Licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License (CC BY 4.0).

Return