AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Constructing Br-Doped Li10SnP2S12-Based All-Solid-State Batteries with Superior Performances

Qiyue Luo1,2,Liang Ming1,2,Dong Zhang3Chaochao Wei1Zhongkai Wu1Ziling Jiang1Chen Liu1( )Shiyu Liu4Kecheng Cao3( )Long Zhang5Chuang Yu1( )Shijie Cheng1
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, Shanghai Tech University, Shanghai 201210, P. R. China
Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
College of Physics and Energy, Fujian Normal University, Fuzhou 350117, P. R. China

†These author contributed equally to this work.

Show Author Information

Abstract

Ionic conductivity and electro/chemical compatibility of Li10SnP2S12 electrolytes play crucial roles in achieving superior electrochemical performances of the corresponding solid-state batteries. However, the relatively low Li-ion conductivity and poor stability of Li10SnP2S12 toward high-voltage layered oxide cathodes limit its applications. Here, a Br-substituted strategy has been applied to promote Li-ion conductivity. The optimal composition of Li9.9SnP2S11.9Br0.1 delivers high conductivity up to 6.0 mS cm−1. 7Li static spin-lattice relaxation (T1) nuclear magnetic resonance (NMR) and density functional theory simulation are combined to unravel the improvement of Li-ion diffusion mechanism for the modified electrolytes. To mitigate the interfacial stability between the Li9.9SnP2S11.9Br0.1 electrolyte and the bare LiNi0.7Co0.1Mn0.2O2 cathode, introducing Li2ZrO3 coating layer and Li3InCl6 isolating layer strategies has been employed to fabricate all-solid-state lithium batteries with excellent electrochemical performances. The Li3InCl6-LiNi0.7Co0.1Mn0.2O2/Li3InCl6/Li9.9SnP2S11.9Br0.1/Li-In battery delivers much higher discharge capacities and fast capacity degradations at different charge/discharge C rates, while the Li2ZrO3@LiNi0.7Co0.1Mn0.2O2/Li9.9SnP2S11.9Br0.1/Li-In battery shows slightly lower discharge capacities at the same C rates and superior cycling performances. Multiple characterization methods are conducted to reveal the differences of battery performance. The poor electrochemical performance of the latter battery configuration is associated with the interfacial instability between the Li3InCl6 electrolyte and the Li9.9SnP2S11.9Br0.1 electrolyte. This work offers an effective strategy to constructing Li10SnP2S12-based all-solid-state lithium batteries with high capacities and superior cyclabilities.

References

1

Yu C, Zhao F, Luo J, Zhang L, Sun X. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy. 2021;83:Article 105858.

2

Yu C, Ganapathy S, Eck E, Wang H, Basak S, Li Z, Wagemaker M. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat Commun. 2017;8(1):1086.

3

Wei C, Liu X, Yu C, Chen S, Chen S, Cheng S, Xie J. Revealing performance of 78Li2S-22P2S5 glass ceramic based solid-state batteries at different operating temperatures. Chin Chem Lett. 2022;34(7):Article 107859.

4

Wei C, Yu C, Wang R, Peng L, Chen S, Miao X, Cheng S, Xie J. Sb and O dual doping of chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries. J Power Sources. 2023;559:Article 232659.

5

Guo Q, Xu F, Shen L, Deng S, Wang Z, Li M, Yao X. 20 μm-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mat Adv. 2022;2022:Article 9753506.

6

Zhao W, Zhang K, Wu F, Wang X, Guo R, Zhang K, Yuan Y, Bai Y, Wu C. Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries. Chem Eng J. 2023;453:Article 139348.

7

Chen SJ, Xie DJ, Liu GZ, Mwizerwa JP, Zhang Q, Zhao YR, Xu XX, Yao XY. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018;14:58–74.

8

Liao C, Yu C, Peng L, Miao X, Chen S, Zhang Z, Cheng S, Xie J. Achieving superior ionic conductivity of Li6PS5I via introducing LiCl. Solid State Ionics. 2022;377:Article 115871.

9

Wu Z, Chen S, Yu C, Wei C, Peng L, Wang H-L, Cheng S, Xie J. Engineering high conductive Li7P2S8I via Cl- doping for all-solid-state Li-S batteries workable at different operating temperatures. Chem Eng J. 2022;442:Article 136346.

10

Rudola A, Wright CJ, Barker J. Reviewing the safe shipping of lithium-ion and sodium-ion cells: A materials chemistry perspective. Energy Mater Adv. 2021;2021:9798460.

11

Yang M, Chen L, Li H, Wu F. Air/water stability problems and solutions for lithium batteries. Energy material. Energy Mater Adv. 2022;2022.

12

Gao H, Grundish NS, Zhao Y, Zhou A, Goodenough JB. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Mater Adv. 2021;2021:1932952.

13

Liao C, Yu C, Miao X, Chen S, Peng L, Wei C, Wu Z, Cheng S, Xie J. Synthesis of Br-rich argyrodite electrolytes enables all-solid-state batteries with superior battery performances at different operating temperatures. Materialia. 2022;26:Article 101603.

14

Lou S, Yu Z, Liu Q, Wang H, Chen M, Wang J. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale. Chem. 2020;6(9):2199–2218.

15

Lou S, Zhang F, Fu C, Chen M, Ma Y, Yin G, Wang J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv Mater. 2021;33(6): e2000721.

16

Chen S, Yu C, Wei C, Jiang Z, Zhang Z, Peng L, Cheng S, Xie J. Unraveling electrochemical stability and reversible redox of Y-doped Li2ZrCl6 solid electrolytes. Energy Mater Adv. 2023;4:0019.

17

Wei C, Yu C, Chen S, Chen S, Peng L, Wu Y, Li S, Cheng S, Xie J. Unraveling the LiNbO3 coating layer on battery performances of lithium argyrodite-based all-solid-state batteries under different cut-off voltages. Electrochim Acta. 2023;438:Article 141545.

18

Guo R, Zhang K, Zhao W, Hu Z, Li S, Zhong Y, Yang R, Wang X, Wang J, Wu C, et al. Interfacial challenges and strategies toward practical sulfide-based solid-state lithium batteries. Energy Mater Adv. 2023;4:0022.

19

Zhang K, Wu F, Wang X, Zheng L, Yang X, Zhao H, Sun Y, Zhao W, Bai Y, Wu C. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv Funct Mater. 2021;32(5):2107764.

20

Wu Z, Wang R, Yu C, Wei C, Chen S, Liao C, Cheng S, Xie J. Origin of the high conductivity of the LiI-doped Li3PS4 electrolytes for all-solid-state lithium–sulfur batteries working in wide temperature ranges. Ind Eng Chem Res. 2022;62(1):96–104.

21

Liao C, Yu C, Chen S, Wei C, Miao X, Cheng S, Xie J. Hunting highly conductive Li6PS5I electrolyte via Sn-cl dual doping for solid-state batteries. Scr Mater. 2023;226(44):Article 115219.

22

Liang J, Li X, Wang C, Kim JT, Yang R, Wang J, Sun X. Current status and future directions in environmental stability of sulfide solid-state electrolytes for all-solid-state batteries. Energy Mater Adv. 2023;4:0021.

23

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, et al. A lithium superionic conductor. Nat Mater. 2011;10(9):682–686.

24

Gao J, Sun X, Wang C, Zhang Y, Yang L, Song D, Wu Y, Yang Z, Ohsaka T, Matsumotoc F, et al. Sb- and O-cosubstituted Li10SnP2S12 with high electrochemical and air stability for all-solid-state lithium batteries. ChemElectroChem. 2022;9(12):202200156.

25

Jiang Z, Li Z, Wang X, Gu C, Xia X, Tu J. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal Interface. ACS Appl Mater Interfaces. 2021;13(26):30739–30745.

26

Yi J, Chen L, Liu Y, Geng H, Fan LZ. High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte. ACS Appl Mater Interfaces. 2019;11(40):36774–36781.

27

Bron P, Johansson S, Zick K, der Gunne JSa, Dehnen S, Roling B. Li10SnP2S12: An affordable lithium superionic conductor. J Am Chem Soc. 2013;135(42):15694–15697.

28

Xu Y-H, Zhang Q-F, Fan B, Xue B, Chen H-J, Zhang X-H, Luo Z-K, Wang F, Le Coq D, Calvez L, et al. An extremely high rate Li–S battery with hybrid electrolyte. J Alloys Compd. 2020;845:156261.

29

Tarhouchi I, Viallet V, Vinatier P, Ménétrier M. Electrochemical characterization of Li10SnP2S12: An electrolyte or a negative electrode for solid state Li-ion batteries? Solid State Ionics. 2016;296:18–25.

30

Sun Y, Suzuki K, Hori S, Hirayama M, Kanno R. Superionic conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system. Chem Mater. 2017;29(14):5858–5864.

31

Wang Q, Liu D, Ma X, Zhou X, Lei Z. Cl-doped Li10SnP2S12 with enhanced ionic conductivity and lower Li-ion migration barrier. ACS Appl Mater Interfaces. 2022;14(19):22225–22232.

32

Peng L, Yu C, Zhang Z, Ren H, Zhang J, He Z, Yu M, Zhang L, Cheng S, Xie J. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chem Eng J. 2022;430:132896.

33

Li X, Jiang Z, Cai D, Wang X, Xia X, Gu C, Tu J. Single-crystal-layered Ni-rich oxide modified by phosphate coating boosting interfacial stability of Li10SnP2S12-based all-solid-state Li batteries. Small. 2021;17(47): e2103830.

34

Vinado C, Wang S, He Y, Xiao X, Li Y, Wang C, Yang J. Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte. J Power Sources. 2018;396:824–830.

35

Mo Y, Ong SP, Ceder G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem Mater. 2011;24(1):15–17.

36

Tan DHS, Wu EA, Nguyen H, Chen Z, Marple MAT, Doux J-M, Wang X, Yang H, Banerjee A, Meng YS. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 2019;4(10):2418–2427.

37

Luo Q, Yu C, Wei C, Chen S, Chen S, Jiang Z, Peng L, Cheng S, Xie J. Enabling superior electrochemical performances of Li10SnP2S12-based all-solid-state batteries using lithium halide electrolytes. Ceram Int. 2023;49(7):11485–11493.

38

Zhang Z, Yao J, Yu C, Xu R, Ma J, Wei C, Peng L, Zhang L, Cheng S, Xie J. Failure analysis of the Ge-substituted Li6PS5I with bare LiNi0.8Co0.1Mn0.1O2 and performance improvement via Li2ZrO3 coating. J Mater Chem A. 2022;10(41):22155–22165.

39

Peng L, Ren H, Zhang J, Chen S, Yu C, Miao X, Zhang Z, He Z, Yu M, Zhang L, et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Storage Mater. 2021;43:53–61.

40

Strauss F, Teo JH, Maibach J, Kim AY, Mazilkin A, Janek J, Brezesinski T. Li2ZrO3-coated NCM622 for application in inorganic solid-state batteries: Role of surface carbonates in the cycling performance. ACS Appl Mater Interfaces. 2020;12(51):57146–57154.

41

Lee JS, Park YJ. Comparison of LiTaO3 and LiNbO3 surface layers prepared by post- and precursor-based coating methods for Ni-rich cathodes of all-solid-state batteries. ACS Appl Mater Interfaces. 2021;13(32):38333–38345.

42

Wang X, Bai Y, Wang X, Wu C. High-voltage layered ternary oxide cathode materials: Failure mechanisms and modification methods. Chin J Chem. 2020;38(12):1847–1869.

43

Wei C, Chen S, Yu C, Wang R, Luo Q, Chen S, Wu Z, Liu C, Cheng S, Xie J. Achieving high-performance Li6.5Sb0.5Ge0.5S5I-based all-solid-state lithium batteries. Appli Mater Today. 2023;31:Article 101770.

44

Liao C, Yu C, Chen S, Wei C, Wu Z, Chen S, Jiang Z, Cheng S, Xie J. Mitigation of the instability of ultrafast Li-ion conductor Li6.6Si0.6Sb0.4S5I enables high-performance all-solid-state batteries. Renewables. 2023;1(2):266–276.

45

Zhan X, Gao S, Cheng Y-T. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance. Electrochim Acta. 2019;300:36–44.

46
Hafner J, Kresse G. The Vienna Ab-Initio Simulation Program VASP: An efficient and versatile tool for studying the structural, dynamic, and electronic properties of materials. In: Gonis A, Meike A, Turchi PEA, editors. Properties of complex inorganic solids. Boston (MA): Springer; 1997. p. 69–82.
47

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.

48

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):Article 154104.

49

Brant JA, Massi DM, Holzwarth NAW, MacNeil JH, Douvalis AP, Bakas T, Martin SW, Gross MD, Aitken JA. Fast lithium ion conduction in Li2SnS3: Synthesis, physicochemical characterization, and electronic structure. Chem Mater. 2014;27(1):189–196.

50

Yu C, Ganapathy S, de Klerk NJ, Roslon I, van Eck ER, Kentgens AP, Wagemaker M. Unravelling Li-ion transport from picoseconds to seconds: Bulk versus interfaces in an Argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery. J Am Chem Soc. 2016;138(35):11192–11201.

51

Doren R, Panthofer M, Pradel L, Tremel W, Mondeshki M. Lithium confinement and dynamics in hexagonal and monoclinic tungsten oxide nanocrystals: A 7Li solid state NMR study. Nanoscale. 2022;14(41):15348–15363.

52

Liang X, Yang L, Lei Y, Qu L, Wang L, Cai W, Xu K, Jiang Y, Liu B, Feng J. Selective blockage of Li-ion diffusion pathways in Li10SnP2S12: Insights from nuclear magnetic resonance. J Phys Chem C. 2021;125(50):27884–27890.

53

Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or se) family of superionic conductors. Energy Environ Sci. 2013;6(1):148–156.

54

Zhang J, Li L, Zheng C, Xia Y, Gan Y, Huang H, Liang C, He X, Tao X, Zhang W. Silicon-doped Argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries. ACS Appl Mater Interfaces. 2020;12(37):41538–41545.

55

Wu F, Li Q, Chen L, Zhang Q, Wang Z, Lu Y, Bao L, Chen S, Su Y. Improving the structure stability of LiNi0.8Co0.1Mn0.1O2 by surface perovskite-like La2Ni0.5Li0.5O4 self-assembling and subsurface La3+ doping. ACS Appl Mater Interfaces. 2019;11(40):36751–36762.

56

Koç T, Hallot M, Quemin E, Hennequart B, Dugas R, Abakumov AM, Lethien C, Tarascon J-M. Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries. ACS Energy Lett. 2022;7(9):2979–2987.

57

Rosenbach C, Walther F, Ruhl J, Hartmann M, Hendriks TA, Ohno S, Janek J, Zeier WG. Visualizing the chemical incompatibility of halide and sulfide-based electrolytes in solid-state batteries. Adv Energy Mater. 2022;13(6):202203673.

58

Koç T, Marchini F, Rousse G, Dugas R, Tarascon J-M. In search of the best solid electrolyte-layered oxide pairing for assembling practical all-solid-state batteries. ACS Appli Energy Mater. 2021;4(12):13575–13585.

Energy Material Advances
Article number: 0065
Cite this article:
Luo Q, Ming L, Zhang D, et al. Constructing Br-Doped Li10SnP2S12-Based All-Solid-State Batteries with Superior Performances. Energy Material Advances, 2023, 4: 0065. https://doi.org/10.34133/energymatadv.0065

77

Views

0

Downloads

51

Crossref

45

Web of Science

46

Scopus

0

CSCD

Altmetrics

Received: 19 July 2023
Accepted: 28 September 2023
Published: 18 October 2023
© 2023 Qiyue Luo et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return