AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

V2CTX MXene Sphere for Aqueous Ion Storage

Xinliang Li1,2,Mian Li3,Wenyu Xu1Zhaodong Huang2Guojin Liang2Qi Yang2Qing Huang3( )Chunyi Zhi2,4( )
Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong 999077, China

†These authors contributed equally to this work.

Show Author Information

Abstract

Despite the remarkable ion-hosting capability of MXenes, their electrochemical performance is restricted to the ion shuttle barrier stemming from the capacious surface and the sluggish chemical activity of intrinsic transition metal layers. Herein, we construct a vertically aligned array of V2CTX flakes utilizing a carbon sphere template (V2CTX@CS), with the interlayer galleries outward facing the external electrolyte, to shorten the diffusion length and mitigate the ion shuttle barrier. Moreover, we leverage the high sensitivity of V2CTX flakes to the water–oxygen environment, fully activating the masked active sites of transition metal layers in an aqueous environment via continuous electrochemical scanning. Aqueous V2CTX@CS/Zn battery delivers a novel capacity enhancement over 42,000 cycles at 10 A g−1. After activation, the capacity reaches up to 409 mAh gV2CTX−1 at 0.5 A g−1 and remains at 122 mAh gV2CTX−1 at 18 A g−1. With a 0.95-V voltage plateau, the energy density of 330.4 Wh kgV2CTX−1 surpasses previous records of aqueous MXene electrodes.

References

1

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater. 2014;26(7):992–1005.

2

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098.

3

Li X. Advancing electrochemistry: Powering electromagnetic energy conversion. Joule. 2023;7:462–464.

4

Ding H, Li Y, Li M, Chen K, Liang K, Chen G, Lu J, Palisaitis J, Persson PO, Eklund PJS, et al. Chemical scissor–mediated structural editing of layered transition metal carbides. Science. 2023;379(6637):1130–1135.

5

Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem. 2022;6(6):389–404.

6

Zia A, Cai Z-P, Naveed AB, Chen J-S, Wang K-X. MXene, silicene and germanene: Preparation and energy storage applications. Mater Today Energy. 2022;30:Article 101144.

7

Wang X, Mathis TS, Li K, Lin Z, Vlcek L, Torita T, Osti NC, Hatter C, Urbankowski P, Sarycheva A, et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat Energy. 2019;4:241–248.

8

Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2019;5(1):5–19.

9

Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese A, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341(6153):1502–1505.

10

Liang G, Li X, Wang Y, Yang S, Huang Z, Yang Q, Wang D, Dong B, Zhu M, Zhi C. Building durable aqueous K-ion capacitors based on MXene family. Nano Res Energy. 2022;1:Article e9120002.

11

Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev. 2019;48(23):72–133.

12

Liu Z, Huang Y, Huang Y, Yang Q, Li X, Huang Z, Zhi C. Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev. 2020;49(2):180–232.

13

Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson PO, Eklund P, Hultman L, Li M, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19(8):894–899.

14

Li X, Li M, Huang Z, Liang G, Chen Z, Yang Q, Huang Q, Zhi C. Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ Sci. 2021;14(7):407–413.

15

Xia Y, Mathis TS, Zhao MQ, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature. 2018;557(7705):409–412.

16

Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew Chem Int Ed Engl. 2012;51(15):3591–3595.

17

Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun. 2014;5:4526.

18

Li X. Customizing MXenes. Matter. 2023;6(2):2519–2522.

19

Xiong D, Shi Y, Yang HY. Rational design of MXene-based films for energy storage: Progress, prospects. Mater Today. 2021;46:183–211.

20

Zhang CJ, Pinilla S, McEvoy N, Cullen CP, Anasori B, Long E, Park S-H, Seral-Ascaso A, Shmeliov A, Krishnan D, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29(11):4848–4856.

21

Zhao X, Vashisth A, Prehn E, Sun W, Shah SA, Habib T, Chen Y, Tan Z, Lutkenhaus JL, Radovic M, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019;1(2):513–526.

22

Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019;141(11):4730–4737.

23

Yang Q, Huang Z, Li X, Liu Z, Li H, Liang G, Wang D, Huang Q, Zhang S, Chen S, et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano. 2019;13(7):8275–8283.

24

Yang Q, Mo F, Liu Z, Ma L, Li X, Fang D, Chen S, Zhang S, Zhi C. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10 000-cycle lifespan and superior rate capability. Adv Mater. 2019;31(32):1901521.

25

Li X, Li N, Huang Z, Chen Z, Liang G, Yang Q, Li M, Zhao Y, Ma L, Dong B, et al. Enhanced redox kinetics and duration of aqueous I2/I conversion chemistry by MXene confinement. Adv Mater. 2021;33(8):Article e2006897.

26

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–4253.

27

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322–1331.

28

Li X, Li M, Yang Q, Li H, Xu H, Chai Z, Chen K, Liu Z, Tang Z, Ma L, et al. Phase transition induced unusual electrochemical performance of V2CTX MXene for aqueous zinc hybrid-ion battery. ACS Nano. 2020;14(1):541–551.

29

Ma P, Fang D, Liu Y, Shang Y, Shi Y, Yang HY. MXene-based materials for electrochemical sodium-ion storage. Adv Sci (Weinh). 2021;8(11):Article e2003185.

30

Li M, Han M, Zhou J, Deng Q, Zhou X, Xue J, Du S, Yin X, Huang Q. Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Advanced Electronic Materials. 2018;4(5):1700617.

31

Li X, Yin X, Song C, Han M, Xu H, Duan W, Cheng L, Zhang L. Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater. 2018;28(41):1803938.

32

Liu W, Qiu C, Zhou J, Ding Z, Zhou X, Du S, Han Y-H, Huang Q. Fabrication of Ti2AlN ceramics with orientation growth behavior by the microwave sintering method. J Eur Ceram Soc. 2015;35(5):1385–1391.

33

Li X, Ma X, Hou Y, Zhang Z, Lu Y, Huang Z, Liang G, Li M, Yang Q, Ma J, et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule. 2021;5(11):2993–3005.

34

Li X, Li M, Li X, Fan X, Zhi C. Low infrared emissivity and strong stealth of Ti-based MXenes. Research. 2022;2022:9892628.

35

Wang C, Chen S, Xie H, Wei S, Wu C, Song L. Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage. Adv Energy Mater. 2019;9(4):1802977.

36

Li X. Chemical tailoring and stitching. Nat Rev Chem. 2023;7(6):381–382.

37

Liu F, Zhou J, Wang S, Wang B, Shen C, Wang L, Hu Q, Huang Q, Zhou A. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J Electrochem Soc. 2017;164(4):A709–A713.

38

Liu F, Liu Y, Zhao X, Liu K, Yin H, Fan LZ. Prelithiated V2C MXene: A high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation. Small. 2020;16(8):1906076.

39

Pang S-Y, Wong Y-T, Yuan S, Liu Y, Tsang M-K, Yang Z, Huang H, Wong W-T, Hao J. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc. 2019;141(24):9610–9616.

40

Wang C, Xie H, Chen S, Ge B, Liu D, Wu C, Xu W, Chu W, Babu G, Ajayan PM, et al. Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv Mater. 2018;30(32):Article e1802525.

41

Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, Wang D, Li H, Chen S, Zhi C. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv Mater. 2020;32(14):1907802.

42

Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun. 2015;6:6544.

43

Shan Q, Mu X, Alhabeb M, Shuck CE, Pang D, Zhao X, Chu X-F, Wei Y, Du F, Chen G, et al. Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochem Commun. 2018;96:103–107.

44

Zhang N, Dong Y, Jia M, Bian X, Wang Y, Qiu M, Xu J, Liu Y, Jiao L, Cheng F. Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Letters. 2018;3(6):1366–1372.

45

Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.

46

Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci. 2018;11(11):3157–3162.

47

Ma L, Chen S, Long C, Li X, Zhao Y, Liu Z, Huang Z, Dong B, Zapien JA, Zhi C. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater. 2019;9(45):1902446.

48

Liu Z, Yang Q, Wang D, Liang G, Zhu Y, Mo F, Huang Z, Li X, Ma L, Tang T, et al. A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv Energy Mater. 2019;9(46):1902473.

49

Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed Engl. 2018;57(15):3943–3948.

50

Huang Z, Zhang R, Zhang S, Li P, Li C, Zhi C. Recent advances and future perspectives for aqueous zinc-ion capacitors. Mater Futures. 2022;1(2):Article 022101.

51

Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater. 2019;31(43):1903778.

52

Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura JA, Xu K, Wang C. Highly reversible zinc metal anode for aqueous batteries. Nat Mater. 2018;17(6):543–549.

53

He J, Lu X. Do zinc dendrites exist in neutral zinc batteries? Green Energy and environment. 2020;5(1):6.

54

Wang R, Wang Q-R, Yao M-J, Chen K-N, Wang X-Y, Liu L-L, Niu Z-Q, Chen J. Flexible ultrathin all-solid-state supercapacitors. Rare Metals. 2018;37(3):536–542.

55

Ge H, Feng X, Liu D, Zhang Y. Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res Energy. 2023;2(1):Article e9120039.

56

Li H, Ma L, Han C, Wang Z, Liu Z, Tang Z, Zhi C. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy. 2019;62:550–587.

57

Li X, Wang Y, Chen Z, Li P, Liang G, Huang Z, Yang Q, Chen A, Cui H, Dong B, et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery. Angew Chem Int Ed Engl. 2022;61(9):Article e202113576.

58

Cai Z, Wang J, Sun Y. Anode corrosion in aqueous Zn metal batteries. eScience. 2023;3:Article 100093.

59

Zhao R, Wang M, Zhao D, Li H, Wang C, Yin L. Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 2017;3(1):132–140.

60

Li J, Yuan X, Lin C, Yang Y, Xu L, Du X, Xie J, Lin J, Sun J. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater. 2017;7(15):1602725.

61

Wang S, Wang Q, Zeng W, Wang M, Ruan L, Ma Y. A new free-standing aqueous zinc-ion capacitor based on MnO(2)-CNTs cathode and MXene anode. Nanomicro Lett. 2019;11(1):70.

62

Hu M, Cui C, Shi C, Wu ZS, Yang J, Cheng R, Guang T, Wang H, Lu H, Wang X. High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2 Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano. 2019;13(6):6899–6905.

63

Sun D, Wang M, Li Z, Fan G, Fan L-Z, Zhou A. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem Commun. 2014;47:80–83.

64

Lin Z, Sun D, Huang Q, Yang J, Barsoum MW, Yan X. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J Mater Chem A. 2015;3(27):14096–14100.

65

Ma L, Chen S, Li N, Liu Z, Tang Z, Zapien JA, Chen S, Fan J, Zhi C. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv Mater. 2020;32(14):1908121.

66

Shen L, Li H, Uchaker E, Zhang X, Cao G. General strategy for designing core-shell nanostructured materials for high-power lithium ion batteries. Nano Lett. 2012;12(11):5673–5678.

67

Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi C. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano. 2019;13(9):10643–10652.

68

Mo F, Chen Z, Liang G, Wang D, Zhao Y, Li H, Dong B, Zhi C. Zwitterionic Sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv Energy Mater. 2020;10(16):2000035.

69

Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1(10):16119.

70

Shen C, Li X, Li N, Xie K, Wang JG, Liu X, Wei B. Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl Mater Interfaces. 2018;10(30):25446–25453.

71

He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L. Layered VS2 Nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920.

72

Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed Engl. 2019;58(46):16358–16367.

73

Wu M, Wang B, Hu Q, Wang L, Zhou A. The synthesis process and thermal stability of V2C MXene. Materials (Basel). 2018;11(11):2112.

74

Jiang H, Chen H, Wei Y, Zeng J, Liu H, Zhang Y, Wu H. Biotemplate-mediated structural engineering of rod-like V2O5 cathode materials for lithium-ion batteries. J Alloys Compd. 2019;787:625–630.

75

Wang D, Zhao Y, Liang G, Mo F, Li H, Huang Z, Li X, Tang T, Dong B, Zhi C. A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy. 2020;71:Article 104583.

Energy Material Advances
Article number: 0066
Cite this article:
Li X, Li M, Xu W, et al. V2CTX MXene Sphere for Aqueous Ion Storage. Energy Material Advances, 2023, 4: 0066. https://doi.org/10.34133/energymatadv.0066

57

Views

1

Downloads

8

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 09 August 2023
Accepted: 07 October 2023
Published: 08 December 2023
© 2023 Xinliang Li et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works.

Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Return