AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhancement in NO2 and H2-Sensing Performance of CuxO/TiO2 Nanotubes Arrays Sensors Prepared by Electrodeposition Synthesis

Araa Mebdir Holi1( )Ghufran Abd AL-Sajad1Narahari Narayan Palei1Asla Abdullah Al-Zahrani2Asmaa Soheil Najm3
Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Al-Qadisiyah 58002, Iraq
Imam Abdulrahman bin Faisal University, Eastern Region, Dammam, Kingdom of Saudi
Department of Electrical Electronic & Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Show Author Information

Abstract

The CuxO/TiO2 nanotubes arrays are fabricated in two stages. Firstly, TiO2-NTs are grown by the Ti-foil anodization process and then annealed for 2h at 500 ℃. Subsequently, CuxO thin film was deposited with different deposition times on the nanotubes by electrochemical cathodic reaction, then heated twice, once at 200 ℃ in the air and then at 300 ℃ in the closed furnace for 2 h, respectively. Pure-TNT and CuxO/TNTs heterostructure are characterized by XRD, FE-SEM, EDX, Hall effect, and as a gas sensor. Results show that the gas sensor (CuOx=1/TiO2 for NO2 and H2 gases) prepared at the time (1 min) is higher than the pure TiO2-NTs and also higher than Cux=2O/TiO2 which were synthesized at various times 3, 5, 7, and 10 mins.

References

[1]

H.W.Z.Y.L. Ji, Gas Sensing Mechanisms of Metal Oxide Semiconductors: A focus Review. Nanoscale, 2019, 11: 22664-22684.

[2]

G. Eranna, B.C. Joshi, D.P. Runthala, et al., Oxide materials for development of integrated gas sensors — a comprehensive review. Critical Reviews in Solid State and Materials Sciences, 2004, 29(3-4): 111-188.

[3]

T. Pustelny, M. Procek, E. Maciak, et al., Gas sensors based on nanostructures of semiconductors ZnO and TiO2. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2012, 60(4): 853-859.

[4]
A. Bally, Electronic properties of nanocrystalline titanium dioxide thin films. PhD. thesis, Ecole Polytechnique Fédéral de Lausanne (EPFL), 1999.
[5]

C.L. Chen, C.L. Dong, C.H. Chen, et al., Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Physical Chemistry Chemical Physics, 2015, 17(34): 22064-22071.

[6]

C. Ruan, M. Paulose, O.K. Varghese, et al., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry B, 2005, 109(33): 15754-15759.

[7]

X. Tong, W. Shen, X. Chen, et al., A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method. Ceramics International, 2017, 43(16): 14200-14209.

[8]

Y.H. Chang, C.M. Liu, C. Chen, et al., The effect of geometric structure on photoluminescence characteristics of 1-D TiO2 nanotubes and 2-D TiO2 films fabricated by atomic layer deposition. Journal of the Electrochemical Society, 2012, 159(7): D401.

[9]

W. Maziarz, TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Applied Surface Science, 2019, 480: 361-370.

[10]

O.K. Varghese, D. Gong, M. Paulose, Hydrogen sensing using titania nanotubes. Sensors and Actuators, B: Chemical, 2003, 93(1-3): 338-344.

[11]

Y. Kwon, H. Kim, S. Lee, et al., Enhanced ethanol sensing properties of TiO2 nanotube sensors. Sensors and Actuators, B: Chemical, 2012, 173: 441-446.

[12]

V. Galstyan, E. Comini, C. Baratto, et al., Two-phase titania nanotubes for gas sensing. Procedia Engineering, 2014, 87: 176-179.

[13]

L. Hou, C. Zhang, L. Li, et al., CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance. Talanta, 2018, 188: 41-49.

[14]

T. Xie, N. Sullivan, K. Steffens, et al., UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film. Journal of Alloys and Compounds, 2015, 653(2): 255-259.

[15]

J. Lee, J. Kim, and S.S. Kim, CuO-TiO2 p-n core-shell nanowires: Sensing mechanism and p/n sensing-type transition. Applied Surface Science, 2018, 448: 489-497.

[16]

G.N. Chaudhari, A.M. Bende, A.B. Bodade, et al., Structural and gas sensing properties of nanocrystalline TiO2: WO3-based hydrogen sensors. Sensors and Actuators B: Chemical, 2006, 115(1): 297-302.

[17]

Z. Wen, L. Tian-Mo, Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Physica B: Condensed Matter, 2010, 405(5): 1345-1348.

[18]

O. Alev, E. Şennik, and Z.Z. Öztürk, Improved gas sensing performance of p-copper oxide thin film/n-TiO2 nanotubes heterostructure. Journal of Alloys and Compounds, 2018, 749: 221-228.

[19]

N.K. Pandey, K. Tiwari, and A. Roy, ZnO-TiO2 nanocomposite: Characterization and moisture sensing studies. Bulletin of Materials Science, 2012, 35(3): 347-352.

[20]
A. Rydosz, A. Czapla, CuO and CuO/TiO2-y thin-film gas sensors of H2 and NO2. Proceedings of 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). Warsaw, Poland, Jun. 17-20, 2018.
[21]

V. Figueiredo, E. Elangovan, and G. Gonc, Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Applied Surface Science, 2008, 254: 3949-3954.

[22]

P. Sawicka-Chudy, M. Sibiński, E. Rybak-Wilusz, et al., Review of the development of copper oxides with titanium dioxide thin-film solar cells. AIP Advances, 2020, 10(1): 010701.

[23]

G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139(1): 1-23.

[24]

N. Bandara, C. Jayathilaka, D. Dissanayaka, et al., Temperature effects on gas sensing properties of electrodeposited chlorine doped and undoped n-type cuprous oxide thin films. Journal of sensor Technology, 2014, 4(03): 119.

[25]
R. Boddula, M.I. Ahamed, and A.M. Asiri, Inorganic nanomaterials for supercapacitor design. CRC Press, 2019.
[26]

S.N. Mazhir, N.H. Harb, Influence of concentration on the structural, optical and electrical properties of TiO2: CuO thin film Fabricate by PLD. IOSR Journal of Applied Physics, 2015, 7(6): 14-21.

[27]

D.O. Scanlon, G.W. Watson, Undoped n-type Cu2O: fact or fiction? The Journal of Physical Chemistry Letters, 2010, 1(17): 2582-2585.

[28]

X. Han, K. Han, and M. Tao, Characterization of Cl-doped n-type Cu2O prepared by electrodeposition. Thin Solid Films, 2010, 518(19): 5363-5367.

[29]

L. Xiong, S. Huang, X. Yang, et al., P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties. Electrochimica Acta, 2011. 56(6): 2735-2739.

[30]

P. Grez, F. Herrera, G. Riveros, et al., Morphological, structural, and photoelectrochemical characterization of n-type Cu2O thin films obtained by electrodeposition. Physica Status Solidi (a), 2012, 209(12): 2470-2475.

[31]

W.J.R.P.J. Siripala, J.R.P. Jayakody, Observation of n-type photoconductivity in electrodeposited copper oxide film electrodes in a photoelectrochemical cell. Solar Energy Materials, 1986, 14(1): 23-27.

[32]

W.P. Siripala, K.P. Kumara, A photoelectrochemical investigation of the n- and p-type semiconducting behaviour of copper(I) oxide films. Semiconductor Science and Technology, 1989, 4(6), 465-468.

[33]

W.P. Siripala, Electrodeposition of n-type cuprous oxide thin films. ECS Transactions, 2008, 11(9): 1.

[34]

R.P. Wijesundera, M. Hidaka, K. Koga, et al., Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films. Thin Solid Films, 2006, 500(1-2): 241-246.

[35]

J.N. Nian, C.C. Tsai, P.C., Lin, et al., Elucidating the Conductivity-Type Transition Mechanism of p-Type Cu2O Films from Electrodeposition. Journal of The Electrochemical Society, 2009, 156(7): H567.

[36]

D.O. Scanlon, G.W. Watson, Undoped n-type Cu2O: Fact or fiction? Journal of Physical Chemistry Letters, 2010, 1(17): 2582-2585.

[37]

P. Sawicka-Chudy, G. Wisz, M. Sibiński, et al., Optical and structural properties of Cu2O thin film as active layer in solar cells prepared by DC reactive magnetron sputtering. Archives of Metallurgy and Materials, 2019, 64(1): 243-250.

[38]

P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review. Sci. Lett. J, 2015, 4(4): 126.

[39]

P.P. Subha, L.S. Vikas, and M.K. Jayaraj, Solution-processed CuO/TiO2 heterojunction for enhanced room temperature ethanol sensing applications. Physica Scripta, 2018, 93(5): 55001.

[40]

M. Batzill, Surface science studies of gas sensing materials: SnO2. Sensors, 2006, 6(10): 1345-1366.

[41]

J. Esmaeilzadeh, E. Marzbanrad, C. Zamani, et al., Fabrication of undoped-TiO2 nanostructure-based NO2 high temperature gas sensor using low frequency AC electrophoretic deposition method. Sensors and Actuators, B: Chemical, 2012, 161(1): 401-405.

[42]

V.L. Patil, S.A. Vanalakar, S.S. Shendage, et al., Fabrication of nanogranular TiO2 thin films by SILAR technique: Application for NO2 gas sensor. Inorganic and Nano-Metal Chemistry, 2019, 49(7): 191-197.

[43]

A.Z. Sadek, J.G. Partridge, D.G. McCulloch, et al., Nanoporous TiO2 thin film based conductometric H2 sensor. Thin Solid FilmsNanoporous TiO2, 2009, 518(4): 1294-1298.

[44]

O. Wurzinger, G. Reinhardt, CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sensors and Actuators, B: Chemical, 2004, 103(1-2): 104-110.

[45]

M. Ichimura, Y. Kato, Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition. Materials Science in Semiconductor Processing, 2013, 16(6): 1538-1541.

[46]

Y. Li, X. Yu, and Q. Yang, Fabrication of TiO2 nanotube thin films and their gas sensing properties. Journal of Sensors, 2009.

[47]

S. Ng, P. Kuberský, M. Krbal, et al., ZnO Coated Anodic 1D TiO2 Nanotube Layers: Efficient Photo-Electrochemical and Gas Sensing Heterojunction. Advanced Engineering Materials, 2018, 20(2): 1-10.

Nano Biomedicine and Engineering
Pages 7-14
Cite this article:
Mebdir Holi A, Abd AL-Sajad G, Palei NN, et al. Enhancement in NO2 and H2-Sensing Performance of CuxO/TiO2 Nanotubes Arrays Sensors Prepared by Electrodeposition Synthesis. Nano Biomedicine and Engineering, 2022, 14(1): 7-14. https://doi.org/10.5101/nbe.v14i1.p7-14

615

Views

44

Downloads

1

Crossref

2

Scopus

Altmetrics

Received: 27 January 2021
Accepted: 02 December 2021
Published: 14 January 2022
© Araa Mebdir Holi, Ghufran Abd AL-Sajada, Asla Abdullah Al-Zahranib, and Asmaa Soheil Najm.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return