PDF (4.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Enhancement in NO2 and H2-Sensing Performance of CuxO/TiO2 Nanotubes Arrays Sensors Prepared by Electrodeposition Synthesis

Araa Mebdir Holi1()Ghufran Abd AL-Sajad1Narahari Narayan Palei1Asla Abdullah Al-Zahrani2Asmaa Soheil Najm3
Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Al-Qadisiyah 58002, Iraq
Imam Abdulrahman bin Faisal University, Eastern Region, Dammam, Kingdom of Saudi
Department of Electrical Electronic & Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Show Author Information

Abstract

The CuxO/TiO2 nanotubes arrays are fabricated in two stages. Firstly, TiO2-NTs are grown by the Ti-foil anodization process and then annealed for 2h at 500 ℃. Subsequently, CuxO thin film was deposited with different deposition times on the nanotubes by electrochemical cathodic reaction, then heated twice, once at 200 ℃ in the air and then at 300 ℃ in the closed furnace for 2 h, respectively. Pure-TNT and CuxO/TNTs heterostructure are characterized by XRD, FE-SEM, EDX, Hall effect, and as a gas sensor. Results show that the gas sensor (CuOx=1/TiO2 for NO2 and H2 gases) prepared at the time (1 min) is higher than the pure TiO2-NTs and also higher than Cux=2O/TiO2 which were synthesized at various times 3, 5, 7, and 10 mins.

References

[1]

H.W.Z.Y.L. Ji, Gas Sensing Mechanisms of Metal Oxide Semiconductors: A focus Review. Nanoscale, 2019, 11: 22664-22684.

[2]

G. Eranna, B.C. Joshi, D.P. Runthala, et al., Oxide materials for development of integrated gas sensors — a comprehensive review. Critical Reviews in Solid State and Materials Sciences, 2004, 29(3-4): 111-188.

[3]

T. Pustelny, M. Procek, E. Maciak, et al., Gas sensors based on nanostructures of semiconductors ZnO and TiO2. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2012, 60(4): 853-859.

[4]
A. Bally, Electronic properties of nanocrystalline titanium dioxide thin films. PhD. thesis, Ecole Polytechnique Fédéral de Lausanne (EPFL), 1999.
[5]

C.L. Chen, C.L. Dong, C.H. Chen, et al., Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Physical Chemistry Chemical Physics, 2015, 17(34): 22064-22071.

[6]

C. Ruan, M. Paulose, O.K. Varghese, et al., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry B, 2005, 109(33): 15754-15759.

[7]

X. Tong, W. Shen, X. Chen, et al., A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method. Ceramics International, 2017, 43(16): 14200-14209.

[8]

Y.H. Chang, C.M. Liu, C. Chen, et al., The effect of geometric structure on photoluminescence characteristics of 1-D TiO2 nanotubes and 2-D TiO2 films fabricated by atomic layer deposition. Journal of the Electrochemical Society, 2012, 159(7): D401.

[9]

W. Maziarz, TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Applied Surface Science, 2019, 480: 361-370.

[10]

O.K. Varghese, D. Gong, M. Paulose, Hydrogen sensing using titania nanotubes. Sensors and Actuators, B: Chemical, 2003, 93(1-3): 338-344.

[11]

Y. Kwon, H. Kim, S. Lee, et al., Enhanced ethanol sensing properties of TiO2 nanotube sensors. Sensors and Actuators, B: Chemical, 2012, 173: 441-446.

[12]

V. Galstyan, E. Comini, C. Baratto, et al., Two-phase titania nanotubes for gas sensing. Procedia Engineering, 2014, 87: 176-179.

[13]

L. Hou, C. Zhang, L. Li, et al., CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance. Talanta, 2018, 188: 41-49.

[14]

T. Xie, N. Sullivan, K. Steffens, et al., UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film. Journal of Alloys and Compounds, 2015, 653(2): 255-259.

[15]

J. Lee, J. Kim, and S.S. Kim, CuO-TiO2 p-n core-shell nanowires: Sensing mechanism and p/n sensing-type transition. Applied Surface Science, 2018, 448: 489-497.

[16]

G.N. Chaudhari, A.M. Bende, A.B. Bodade, et al., Structural and gas sensing properties of nanocrystalline TiO2: WO3-based hydrogen sensors. Sensors and Actuators B: Chemical, 2006, 115(1): 297-302.

[17]

Z. Wen, L. Tian-Mo, Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Physica B: Condensed Matter, 2010, 405(5): 1345-1348.

[18]

O. Alev, E. Şennik, and Z.Z. Öztürk, Improved gas sensing performance of p-copper oxide thin film/n-TiO2 nanotubes heterostructure. Journal of Alloys and Compounds, 2018, 749: 221-228.

[19]

N.K. Pandey, K. Tiwari, and A. Roy, ZnO-TiO2 nanocomposite: Characterization and moisture sensing studies. Bulletin of Materials Science, 2012, 35(3): 347-352.

[20]
A. Rydosz, A. Czapla, CuO and CuO/TiO2-y thin-film gas sensors of H2 and NO2. Proceedings of 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). Warsaw, Poland, Jun. 17-20, 2018.
[21]

V. Figueiredo, E. Elangovan, and G. Gonc, Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Applied Surface Science, 2008, 254: 3949-3954.

[22]

P. Sawicka-Chudy, M. Sibiński, E. Rybak-Wilusz, et al., Review of the development of copper oxides with titanium dioxide thin-film solar cells. AIP Advances, 2020, 10(1): 010701.

[23]

G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139(1): 1-23.

[24]

N. Bandara, C. Jayathilaka, D. Dissanayaka, et al., Temperature effects on gas sensing properties of electrodeposited chlorine doped and undoped n-type cuprous oxide thin films. Journal of sensor Technology, 2014, 4(03): 119.

[25]
R. Boddula, M.I. Ahamed, and A.M. Asiri, Inorganic nanomaterials for supercapacitor design. CRC Press, 2019.
[26]

S.N. Mazhir, N.H. Harb, Influence of concentration on the structural, optical and electrical properties of TiO2: CuO thin film Fabricate by PLD. IOSR Journal of Applied Physics, 2015, 7(6): 14-21.

[27]

D.O. Scanlon, G.W. Watson, Undoped n-type Cu2O: fact or fiction? The Journal of Physical Chemistry Letters, 2010, 1(17): 2582-2585.

[28]

X. Han, K. Han, and M. Tao, Characterization of Cl-doped n-type Cu2O prepared by electrodeposition. Thin Solid Films, 2010, 518(19): 5363-5367.

[29]

L. Xiong, S. Huang, X. Yang, et al., P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties. Electrochimica Acta, 2011. 56(6): 2735-2739.

[30]

P. Grez, F. Herrera, G. Riveros, et al., Morphological, structural, and photoelectrochemical characterization of n-type Cu2O thin films obtained by electrodeposition. Physica Status Solidi (a), 2012, 209(12): 2470-2475.

[31]

W.J.R.P.J. Siripala, J.R.P. Jayakody, Observation of n-type photoconductivity in electrodeposited copper oxide film electrodes in a photoelectrochemical cell. Solar Energy Materials, 1986, 14(1): 23-27.

[32]

W.P. Siripala, K.P. Kumara, A photoelectrochemical investigation of the n- and p-type semiconducting behaviour of copper(I) oxide films. Semiconductor Science and Technology, 1989, 4(6), 465-468.

[33]

W.P. Siripala, Electrodeposition of n-type cuprous oxide thin films. ECS Transactions, 2008, 11(9): 1.

[34]

R.P. Wijesundera, M. Hidaka, K. Koga, et al., Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films. Thin Solid Films, 2006, 500(1-2): 241-246.

[35]

J.N. Nian, C.C. Tsai, P.C., Lin, et al., Elucidating the Conductivity-Type Transition Mechanism of p-Type Cu2O Films from Electrodeposition. Journal of The Electrochemical Society, 2009, 156(7): H567.

[36]

D.O. Scanlon, G.W. Watson, Undoped n-type Cu2O: Fact or fiction? Journal of Physical Chemistry Letters, 2010, 1(17): 2582-2585.

[37]

P. Sawicka-Chudy, G. Wisz, M. Sibiński, et al., Optical and structural properties of Cu2O thin film as active layer in solar cells prepared by DC reactive magnetron sputtering. Archives of Metallurgy and Materials, 2019, 64(1): 243-250.

[38]

P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review. Sci. Lett. J, 2015, 4(4): 126.

[39]

P.P. Subha, L.S. Vikas, and M.K. Jayaraj, Solution-processed CuO/TiO2 heterojunction for enhanced room temperature ethanol sensing applications. Physica Scripta, 2018, 93(5): 55001.

[40]

M. Batzill, Surface science studies of gas sensing materials: SnO2. Sensors, 2006, 6(10): 1345-1366.

[41]

J. Esmaeilzadeh, E. Marzbanrad, C. Zamani, et al., Fabrication of undoped-TiO2 nanostructure-based NO2 high temperature gas sensor using low frequency AC electrophoretic deposition method. Sensors and Actuators, B: Chemical, 2012, 161(1): 401-405.

[42]

V.L. Patil, S.A. Vanalakar, S.S. Shendage, et al., Fabrication of nanogranular TiO2 thin films by SILAR technique: Application for NO2 gas sensor. Inorganic and Nano-Metal Chemistry, 2019, 49(7): 191-197.

[43]

A.Z. Sadek, J.G. Partridge, D.G. McCulloch, et al., Nanoporous TiO2 thin film based conductometric H2 sensor. Thin Solid FilmsNanoporous TiO2, 2009, 518(4): 1294-1298.

[44]

O. Wurzinger, G. Reinhardt, CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sensors and Actuators, B: Chemical, 2004, 103(1-2): 104-110.

[45]

M. Ichimura, Y. Kato, Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition. Materials Science in Semiconductor Processing, 2013, 16(6): 1538-1541.

[46]

Y. Li, X. Yu, and Q. Yang, Fabrication of TiO2 nanotube thin films and their gas sensing properties. Journal of Sensors, 2009.

[47]

S. Ng, P. Kuberský, M. Krbal, et al., ZnO Coated Anodic 1D TiO2 Nanotube Layers: Efficient Photo-Electrochemical and Gas Sensing Heterojunction. Advanced Engineering Materials, 2018, 20(2): 1-10.

Nano Biomedicine and Engineering
Pages 7-14
Cite this article:
Mebdir Holi A, Abd AL-Sajad G, Palei NN, et al. Enhancement in NO2 and H2-Sensing Performance of CuxO/TiO2 Nanotubes Arrays Sensors Prepared by Electrodeposition Synthesis. Nano Biomedicine and Engineering, 2022, 14(1): 7-14. https://doi.org/10.5101/nbe.v14i1.p7-14
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return