AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (607.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Research and Development of Nanopharmaceuticals in China

Research Center of New Drug Evaluation, The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
Research Center of Biological Evaluation of Nanopharmaceuticals, China National Academy of Nanotechnology and Engineering, Tianjin 300457, China
Show Author Information

Abstract

Nanopharmacoeuticals based on nanomaterials and nanotechnology are medicinal products for drug delivery, nano drugs and nano therapies, in vivo imaging, in vitro diagnostics, biomaterials, and active implants. Nanoscience and nanotechnology in China become ever more consequential in our lives; all members of the scientific community should better inform and educate the public about the great changes this new nano era is likely to bring. Here we review some main advances on the research and development of nanomaterials, nanotechnology and nanopharmaceuticals in China. For nanopharmaceuticals, we focus on the research and application of nanotechnology in anti-cancer drugs, and biological evaluation studies of nanomaterials.

References

[1]

Foldvari M. Nanomedicine research in Canada. Nanomedicine 2006; 2(4): 296

[2]

Zhao XJ. Nanomedicine Research in China. Nanomedicine 2006; 2(4): 297

[3]

Wong K. Development of nanomedicine in Hong Kong. Nanomedicine 2006; 2(4): 297

[4]

Jain NK. Status of nanomedicine research in India. Nanomedicine 2006; 2(4): 297

[5]

Urisu T, Wei CM. America—Japan Nanomedicine Society (AJNS). Nanomedicine 2006; 2(4): 297-298

[6]

Lee YS. Current research status of biomedical micro and nano technologies in Korea. Nanomedicine 2006; 2(4): 298

[7]

Yaminsky I. Outlook into the nanomedicine research in Russia. Nanomedicine 2006; 2(4): 298

[8]

Yun J. Singapore — an ideal R&D hub for bionanotechnology. Nanomedicine 2006; 2(4): 299

[9]

Hunziker P. Nanomedicine Research in Switzerland. Nanomedicine 2006; 2(4): 299

[10]

Donald A. Tomalia. International report on nanomedicine in the U.S.A. Nanomedicine 2006; 2(4): 299

[11]

Liang XJ, Chen C, Zhao Y, Jia L, Wang PC. Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr. Drug Meta. 2008; 9(8):697-709. doi:10.2174/138920008786049230

[12]

Si DY, Sun YD, Cheng TF, Liu CX. Biomedical evaluation of nanomedicines, Asian J. Pharmacodyn Pharmacokinet, 2007, 7(2):83-97

[13]

Sun YD, Chen ZM, Wei H, Liu CX. Nanotechnology challenge: safety of nanomaterials and nanomedicines. Asian J. Pharmacodyn Pharmacokinet 2007; 7(1): 17-31.

[14]

Cheng TF, Sun YD, Si DY, Liu CX. Attention on research of pharmacology and toxicology of nanomedicines. Asian J. Pharmacodyn Pharmacokinet 2009; 9(1):25-27.

[15]

Bai CL. Ascent of Nanoscience in China. Science 2005; 309: 61-63. doi:10.1126/science.1115172

[16]

Liang XJ, Chen C, Zhao Y, Wang PC. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol. Biol. 2010; 596:467-88. doi:10.1007/978-1-60761-416-6_21

[17]

Liang F, Chen B.A Review on Biomedical Applications of Single-Walled Carbon Nanotubes. Curr. Med. Chem. 2009 Nov 24. [Epub ahead of print]

[18]

Jia X, Fan H, Zhang F, Qin L. Using sonochemistry for the fabrication of hollow ZnO microspheres. Ultrason Sonochem 2010; 17(2): 284-7. doi:10.1016/j.ultsonch.2009.09.010

[19]

Ting G, Chang CH, Wang HE. Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy.Anticancer Res. 2009; 29(10):4107-18.

[20]

Li L, Liu J, Diao Z, Shu D, Guo P, Shen G. Evaluation of specific delivery of chimeric phi29 pRNA/siRNA nanoparticles to multiple tumor cells. Mo.l Biosyst. 2009; 5(11):1361-8. doi:10.1039/b903428e

[21]

Liu L, Zhang J, Su X, Mason RP. In vitro and In vivo Assessment of CdTe and CdHgTe Toxicity and Clearance. J. Biomed. Nanotechnol. 2008; 4(4): 524-528. doi:10.1166/jbn.2008.018

[22]

Wang Y, Tu SL, Li RS, Yang XY, Liu LR, Zhang QQ. Cholesterol succinyl chitosan anchored liposomes: preparation, characterization, physical stability, and drug release behavior. Nanomedicine 2009 Oct 2.

[23]

Gao J. MRI-Visible Micellar Nanomedicine for Targeted Drug Delivery to Lung Cancer Cells. Mol. Pharm. 2009 Aug 26.

[24]

Huang H, Chen M, Bruno P, Lam R, Robinson E, Gruen D, Ho D. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks. J. Phys. Chem. B 2009; 113(10):2966-71. doi:1 0.1021/jp9004086

[25]

Fitzpatrick JM. The application of nanotechnology for the treatment of metastatic prostate cancer. BJU Int. 2009; 104(6).

[26]

Xia T, Li N, Nel AE. Potential health impact of nanoparticles. Annu. Rev. Public Health. 2009; 30:137-50. doi:10.1146/annurev.publhealth.031308.100155

[27]

Xiao Q, Zhou B, Huang S, Tian F, Guan H, Ge Y, Liu X, He Z, Liu Y. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements. Nanotechnology 2009; 20(32): 325101. doi:10.1088/0957-4484/20/32/325101

[28]

Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008; 44(9):1689-99. doi:10.1016/j.freeradbiomed.2008.01.028

[29]

Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med. 2008; 49(s2):113s-128s. doi:10.2967/jnumed.107.045922

[30]

Liang XJ, Chen C, Zhao Y, Jia L, Wang PC. Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr. Drug Metab. 2008; 9(8):697-709. doi:10.2174/138920008786049230

[31]

Liu L, Zhang J, Su X, Mason RP.In vitro and In vivo Assessment of CdTe and CdHgTe Toxicity and Clearance. J. Biomed. Nanotechnol. 2008; 4(4):524-528. doi:10.1166/jbn.2008.018

[32]

Yin JJ, Lao F, Meng J, Fu PP, Zhao Y, Xing G, Gao X, Sun B, Wang PC, Chen C, Liang XJ. Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol. Pharmacol. 2008; 74(4):1132-40. doi:10.1124/mol.108.048348

[33]

Tao SL, Desai TA. Microfabricated drug delivery systems: from particles to pores. Adv. Drug Delivery. Rev. 2003; 55:315-28. doi:10.1016/S0169-409X(02)00227-2

[34]
Zhang MJ, Tarn TJ, Xi N. Micro-/nano-devices for controlled drug delivery. Proceedings of the 2004 IEEE International Conference on Robotics and Automation; 2004 April 26-May 1; New Orleans, La. New Orleans. The Conference; 2004; 2068-73.
[35]

Krukemeyer MG, Wagne W, Jakobs M, Kren V. Tumor regression by means of magnetic drug targeting. Nanomedicine 2009; 4(8): 875-882. doi:10.2217/nnm.09.73

[36]

Tong L, Zhao Y, Huff T, Hansen M, Wei A, Cheng J. Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Adv. Mater. 2007; 19: 3136–3141. doi:10.1002/adma.200701974

[37]

Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren QS, Cui DX. RGD-conjugated dendrimer-modified gold nanorods for in Vivo tumor targeting and photothermal therapy. Mol. Pharm. 2010; doi:10.1021/mp9001415

[38]

Pan B, Ao L, Gao F, Tian H, He R, Cui D. End-to-end selfassembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 2005; 16:1776–1780. doi:10.1088/0957-4484/16/9/061

[39]

Pan B; Cui D; Sheng Y; Ozkan C, Gao F, He R, Li Q.; Xu P, Huang T. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007; 67: 8156–8163. doi:10.1158/0008-5472.CAN-06-4762

[40]

Cai W, Chen X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 2008; 3: 89–96. doi:10.1038/nprot.2007.478

[41]

Song H, He R, Wang K, Ruan J, Bao CC, Li N, Ji JJ, Cui DX. Anti-HIF-1a antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials 2009, doi:10.1016/j.bio materials.2009.11.067

[42]

Chen Z, Chen H, Meng H, Xing G, Gao X, Sun B, Shi X, Yuan H, Zhang C, Liu R, Zhao F, Zhao Y, Fang X. Biodistribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol. Appl. Pharmacol. 2008; 230(3):364-71. doi:10.1016/j.taap.2008.03.022

[43]

Tang N, Du G, Wang N, Liu C, Hang H, and Liang W. Improving Penetration in Tumors with Nano- assemblies of Phospholipids and Doxorubicin. J. Natl. Cancer Inst. 2007; 99: 1004-1015. doi:10.1093/jnci/djm027

[44]

Dreher MR, Chilkoti A. Toward a Systems Engineering Approach to Cancer Drug Delivery. J. Natl. Cancer Inst. 2007; 99: 983-985. doi:10.1093/jnci/djm042

[45]

Wei G, Xiao S, Si D, Liu C. Comparative pharmacokinetics of micelle- or liposomal encapsulated doxorubicin formulations to healthy rats and tumor-bearing mice. Drug Metabolism Reviews 2008; 40(S2):81-82.

[46]

Xu Y, Xiao S, Wei G, Liu C, Si D. Nanoparticle of doxorubicin eliminate the accumulation in tissues of tumorbearing mice. Drug Metabolism Reviews 2008; 40(S2):193.

[47]

Cheng T, Si D, Liu C. Rapid and sensitive LC-MS method for pharmacokinetic study of vinorelbine in rats. Biomedical Chromatography, 2009; 23:909-911. doi:10.1002/bmc.1216

[48]

Zhang J, Zhang Z, Yang H, Tan Q, Qin S, Qiu X. Lyophilized Paclitaxel Magnetoliposomes as a Potential Drug Delivery System for Breast Carcinoma via Parenteral Administration: In Vitro and in Vivo Studies. Pharmaceutical Research 2005; 22(4):573-583. doi:10.1007/s11095-005-2496-8

[49]

Li Q, Cheng T, Huang Y, Si D, Liu C. Comparative pharmacokinetics and tissue distribution between free and Micelle-Encapsulated Alprostadil. Drug Metabolism Reviews, 2008; 40(S2):80-81.

[50]

Thomas T, Thomas K, Sadrich N, Savage N, Adair P, Bronaugh R. Research strategies for safety evaluation of nanomaterials, Part Ⅶ: Evaluating consumer exposure to nanoscale materials. Toxicol. Sci. 2006; 91(1):14-19. doi:10.1093/toxsci/kfj129

[51]

Gubbels-van Hal WMLG, Blaauboer BJ, Barentsen HM, Hoitink MA, Meerts IATM, van der Hoeven JCM. An alternative approach for the safety evaluation of new and existing chemicals, an exercise in integrated testing. Reg. Toxicol. Pharmacol. 2005; 42:284–295. doi:10.1016/j.yrtph.2005.05.002

[52]

Cui D, Gao H. Advance and prospect of bionanomaterials. Biotechnol. Prog. 2003; 19:683-692. doi:10.1021/bp025791i

Nano Biomedicine and Engineering
Pages 1-12
Cite this article:
Liu C. Research and Development of Nanopharmaceuticals in China. Nano Biomedicine and Engineering, 2009, 1(1): 1-12. https://doi.org/10.5101/nbe.v1i1.p1-12

368

Views

14

Downloads

4

Crossref

35

Scopus

Altmetrics

Received: 10 November 2009
Accepted: 06 December 2009
Published: 09 December 2009
© 2009 C. Liu et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return