AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (412.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
New Views | Open Access

Research and Application of Targeting Nano-Drugs

Research Center of New Drug Evaluation, The State Key Laboratories of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
Research Center of Biological Evaluation of Nanopharmaceuticals, China National Academy of Nanotechnology and Engineering, Tianjin 300457, China
Show Author Information

Abstract

Nano-drug, a new type drug, is rapidly developing with nanotechnologies in biology and medicine field. The development of nano-drug s will cause the revolution of the diagnosis and treatment. Because Nano-drug carriers have high targeting, favorable sustained, controlled release capability and superior cell penetration ability, it can improve efficacy of drugs and reduce side effects. The role of the object from the target organ, target cell to the most advanced structure in the target cells. The three levels method of targeted therapy all could complete with nanotechnology. Nano-targeting drugs can be divided into passive targeting and active targeting. Current research focuses on the development of functionalized capsules for specific targeting of cancer or immune cells, and on controlling their release properties and targeting functionalities to develop new nano-drugs.

References

1

Igarashi E. Factors affecting toxicity and efficacy of polymeric nanomedicines. Toxicol Appl Pharmacol 2008; 229(1):121-34. doi: 10.1016/j.taap.2008.02.007

2

Shephard MJ, Todd D, Adair BM, Po ALW, Mackie DP, Scott E.M. Immunogenicity of bovineparainfluenza type 3 virus proteins encapsulated in nanoparticle vaccines, following intranasal administra-tion to mice. Res Vet Sci 2003; 74: 187-190. doi: 10.1016/S0034-5288(02)00180-7

3

Cui ZR, Mumper RJ. Intranasal administra-tion of plasmid DNAcoated nanoparticles result in en-hanced immune responses. J Pharm Pharmacol 2002; 54: 1195-1203. doi: 10.1211/002235702320402035

4

Matsusaki M, Akashi M.Functional multilayered capsules for targeting and local drug delivery. Expert Opin Drug Deliv 2009; 6(11):1207-17. doi: 10.1517/17425240903280414

5

Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed 2005; 1(3):193-212. doi: 10.1016/j.nano.2005.06.004

6

Maeda H. Wu J, Sawa Y, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J Control Release 2000; 65: 271-284. doi: 10.1016/S0168-3659(99)00248-5

7

Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Delivery Rev 2004; 56: 1273-1289.doi: 10.1016/j.addr.2003.12.004

8

Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Delivery Rev 2002; 54: 235-252. doi: 10.1016/S0169-409X(02)00019-4

9

Greco F, Vicent MJ.Polymer-drug conjugates: current status and future trends. Front Biosci 2008; 13:2744-56. doi: 10.2741/2882

10

Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Releas 2001; 74: 317-323. doi: 10.1016/S0168-3659(01)00342-X

11

Du SL, Pan H, Lu WY, Wang J, Wu J, Wang JY. Cyclic Arg-GlyAsp peptide-labeled liposomes for targeting drug therapy of hepatic fibros is in rats. J Pharmacol Exp Ther 2007; 322: 560-568. doi: 10.1124/jpet.107.122481

12

Briz O, Macias RIR, Vallejo M, Silva A, Serrano MA, Marin JJG. Usefulness of liposomes loaded with cytos tatic bile acid derivatives to circum-vent chemotherapy res is tance of enterohepatic tumors. Mol Pharmacol 2003; 63: 742–750. doi: 10.1124/mol.63.3.742

13

aul JM, Annapragada AV, Bellamkonda RV. A dualligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 2006; 114: 277-287. doi: 10.1016/j.jconrel.2006.05.028

14

Hashida M, Akamatsu K, Nishikawa M, Yamashita F, Yoshikawa H, Takakura Y. Design of polymeric prodrugs of PGE1 for cellspecific hepatic targeting. Pharmazie 2000; 55: 202-205.

15

Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer detection and improved treatment: current prspective and future promise. Pharmacol Ther 2010; 128(2):324-35. doi: 10.1016/j.pharmthera.2010.07.007

16

Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5):567-81. doi: 10.1517/17425247.5.5.567

17

Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(1):99-112. doi: 10.1002/wnan.66

18

Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hy-drophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release 1998; 53: 119-130. doi: 10.1016/S0168-3659(97)00244-7

19

Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. Preparation a characterization of thermally responsive block copolymer micelles compris-ing poly (N-isopropylacrylamide-β-DL-lactide). J Control Release 1998; 55: 87-98. doi: 10.1016/S0168-3659(98)00023-6

20

Meyer O, Papahadjopoulos D, Leroux JC. Co-polymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes FEBS Lett 1998; 421: 61-64. doi: 10.1016/S0014-5793(97)01520-2

21

Stover TC, Kim YS, Lowe TL, Keste M. Thermoresponsive and bio-degradable linear-dendritic nanoparticles for targeted and sustained release of a proapoptotic drug. Biomaterials 2008; 29: 359-369. doi: 10.1016/j.biomaterials.2007.09.037

22

Na K, Lee ES, Bae YH. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanopar-ticles responding to tumor pH: pHdependent cell inter-action, internalization and cytotoxicity in vitro. J. Control Release 2003; 87: 3-13. doi: 10.1016/S0168-3659(02)00345-0

23

Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Control. Release, 2002; 82: 17-27. doi: 10.1016/S0168-3659(02)00088-3

24

Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines. Biochem Soc Trans 2007, 35(Pt 1):56-60.

25

Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F. Nanomedicines for active targeting: physicochemical characterization of paclitaxelloaded anti-HER2 immunonanoparticle and in vitro functional studies on target cells. Eur J Pharm Sci 2009; 38(3):230-7. doi: 10.1016/j.ejps.2009.07.006

26

Xiao S., Tong CY, Liu XM, Yu DM, Liu QL, Xue CG, Tang DY, Zhao LJ. Preparation of folate-conjugated starch nanoparticles and its applica-tion to tumor-targeted drug delivery vector. Chin Sci Bull 2006; 51: 1151-1155. doi: 10.1007/s11434-006-2039-7

27

Pan J, Feng SS. Targeted delivery of pa clitaxel using folatedecorated poly(lactide)-vitaminE TPGS nan-oparticles. Biomaterials 2008; 29: 2663-2672. doi: 10.1016/j.biomaterials.2008.02.020

28

Dinesen L, Travis S.Targeting nanomedicines in the treatment of Crohn's disease: focus on certolizumab pegol (CDP870).. Int J Nanomedicine 2007; 2(1):39-47. doi: 10.2147/nano.2007.2.1.39

29

Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloprotei-nase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinomaselective targeting. J Control Release 2006; 111: 333-342. doi: 10.1016/j.jconrel.2005.12.023

30

Liang XJ, Chen C, Zhao Y, Jia L, Wang PC. Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Metab 2008; 9(8): 697-709. doi: 10.2174/138920008786049230

31

Tang N, Du G, Wang N, Liu C, Hang H, and Liang W. Improving Penetration in Tumors with Nano-assemblies of Phospholipids and Doxorubicin. J Natl Cancer Inst 2007; 99: 1004-1015. doi: 10.1093/jnci/djm027

32

Dreher MR, Chilkoti A. Toward a Systems Engineering Approach to Cancer Drug Delivery. J Natl Cancer Inst 2007; 99: 983-985. doi: 10.1093/jnci/djm042

33

Wei GL, Xiao SH, Si DY, Liu CX. Comparative pharmacokinetics of micelle-or liposomal encapsulated doxorubicin formulations to healthy rats and tumor-bearing mice. Drug Metabolism Reviews 2008; 40(S2): 81-82. 46.

34

Xu YY, Xiao SH, Wei GL, Liu CX, Si DY. Nanoparticle of doxorubicin eliminate the accumulation in tissues of tumor-bearing mice. Drug Metabolism Reviews 2008; 40(S2):193.

35

Li QS, Cheng TF, Huang YR, Si DY, Liu CX. Comparative pharmacokinetics and tissue distribution between free and MicelleEncapsulated Alprostadil. Drug Metabolism Reviews 2008; 40(S2): 80-81.

36

Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007; 15(7-8):457-64. doi: 10.1080/10611860701539584

37

Sershen SR, Westcoot SL, Halas NJ, West JL. Temperature-sensitive polymer-nanoshell com-posites for photothermally modulated drug delivery. J Biomed Mater Res 2000; 51: 293-298. doi: 10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T

38

Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995; 83: 1029–1037. doi: 10.3171/jns.1995.83.6.1029

39

Yuan F. Transvascular drug delivery in solid tumors. Semin Radiat Oncol 1998; 8: 164–175. doi: 10.1016/S1053-4296(98)80042-8

40

Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol 2005; 288(4): F605–F613.

41

Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U.S.A. 1998; 95: 4607–4612.doi: 10.1073/pnas.95.8.4607

42

Qi L, Xu Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg Med Chem Lett 2006; 16: 4243–4245. doi: 10.1016/j.bmcl.2006.05.078

43

Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumorspecific nanoparticle delivery: effect of particle size. Cancer Res 2000; 60: 4440–4445.

44

Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996; 13: 245–255. doi: 10.3109/02652049609026013

45

Seki J, Sonoke S, Saheki A, Koike T, Fukui H, et al. Lipid transfer protein transports compounds from lipid nanoparticles to plasma lipoproteins. Int J Pharm 2004; 275: 239–248. doi: 10.1016/j.ijpharm.2004.02.008

46

Foldvari M. Nanomedicine research in Canada. Nanomed 2006; 2(4): 296. doi: 10.1016/j.nano.2006.10.088

47

Zhao XJ. Nanomedicine Research in China. Nanomed 2006; 2(4): 297.

48

Wong K. Development of nanomedicine in Hong Kong. Nanomed 2006; 2(4): 297. doi: 10.1016/j.nano.2006.10.091

49

Jain NK. Status of nanomedicine research in India. Nanomed 2006; 2(4): 297. doi: 10.1016/j.nano.2006.10.092

50

Urisu T, Wei CM. America—Japan Nanomedicine Society (AJNS). Nanomed 2006; 2(4): 297-298. doi: 10.1016/j.nano.2006.10.093

51

Lee YS. Current research status of biomedical micro and nano technologies in Korea. Nanomed 2006; 2(4): 298. doi: 10.1016/j.nano.2006.10.094

52

Yaminsky I. Outlook into the nanomedicine research in Russia. Nanomed 2006; 2(4): 298. doi: 10.1016/j.nano.2006.10.095

53

Yun J. Singapore—an ideal R&D hub for bio-nanotechnology. Nanomed 2006; 2(4): 299.

54

Hunziker P. Nanomedicine Research in Switzerland. Nanomed 2006, 2(4): 299.

55

Donald A. Tomalia. International report on nanomedicine in the U.S.A.. Nanomed 2006; 2(4): 299. doi: 10.1016/j.nano.2006.10.098

56

Liang XJ, Chen C, Zhao Y, Jia L, Wang PC. Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Meta 2008; 9(8): 697-709. doi: 10.2174/138920008786049230

57

Si DY, Sun YD, Cheng TF, Liu CX. Biomedical evaluation of nanomedicines, Asia J Pharmacodyn Pharmacokinet 2007; 7(2): 83-97.

58

Sun YD, Chen ZM, Wei H, Liu CX. Nanotechnology challenge: safety of nanomaterials and nanomedicines. Asian J Pharmacodyn Pharmacokinet 2007; 7(1): 17-31.

59

Cheng TF, Sun YD, Si DY, Liu CX. Attention on research of pharmacology and toxicology of nanomedicines. Asian J Pharmacodyn Pharmacokinet 2009; 9(1): 25-27.

60

Bai CL. Ascent of Nanoscience in China. Science 2005; 309: 61-63 doi: 10.1126/science.1115172

61

Liu, CX. Research and Development of Nanopharmaceuticals in China. Nano Biomed Eng 2009; 1: 1-12. doi: 10.5101/nbe.v1i1.p1-12

62

Tian FR, Prina-Mello A, Estrada G, Beyerle A, Möller W, Schulz H, Kreyling W, Stoeger T. Macrophage Cellular Adaptation, Localization and Imaging of Different Size Polystyrene Particles. Nano Biomed Eng 2009; 1(1): 13-26. doi: 10.5101/nbe.v1i1.p13-26

63

Xie CJ, Yin DG, Li J, Zhang L, Liu BH, Wu MH. Preparation of a Novel Amino Functionalized Fluorescein-doped Silica Nanoparticle for pH Probe. Nano Biomed Eng 2009; 1(1): 27-31.

64

Li H, Zhang YG, Huang WP. Photoactivation of Ion-exchangeable Trititanate Nanotubes Modified by MS (M = Cd, Zn) Nanoparticles. Nano Biomed Eng 2009; 1(1):32-37.

65

Vishwanathan R, Wilson TA, Nicolosi RJ. Bioavailability of a Nanoemulsion of Lutein is Greater than a Lutein Supplement. Nano Biomed Eng 2009; 1(1): 38-49. doi: 10.5101/nbe.v1i1.p38-49

66

Bao CC, Yang H, Sheng P, ong H, Ding XH, Liu B, Lu YC, Hu GH, Cui DX. Cloning, Expression, Monoclonal Antibody Preparation of Human Gene NBEAL1 and Its Application in Targeted Imaging of Mouse Glioma. Nano Biomed Eng 2009; 1(1): 50-56.

67

Liu DW, Chen ZW, Wang X, Xu HZ, Wang L. The Threedimensional Images and Intracellular Calcium Analysis of Weigela Floridacv and Lonicera Japonica Thunb Pollen. Nano Biomed Eng 2009; 1(1): 57-60. doi: 10.5101/nbe.v1i1.p57-60

68

Cui DX, Han HD, Li ZM, Song H, Wang K, He R, Liu B, Liu HL, Bao CC, Huang P, Ruan J, Gao F, Yang H, Cho HS, Ren Q, Shi DL. Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging and Hyperthermia Therapy of Prostate Cancer. Nano Biomed Eng 2009; 1(1):61-74. doi: 10.5101/nbe.v1i1.p61-74

69

He CL, Zhang L, Wang HS, Zhang F, Mo XM. Physical-chemical Properties and in vitro Biocompatibility Assessment of Spider Silk, Collagen and Polyurethane Nanofiber Scaffolds for Vascular Tissue Engineering. Nano Biomed Eng 2009; 1(1): 80-88. doi: 10.5101/nbe.v1i1.p80-88

70

Aslan K. Rapid Whole Blood Bioassays using Microwave-Accelerated Metal-Enhanced Fluorescence. Nano Biomed Eng 2010; 2(1): 1-7. doi: 10.5101/nbe.v2i1.p1-7

71

Dada M, Moses OF, Awojoyogbe OB, Boubaker K, Isah K. Investigation of Nano-keyhole Cooling Evolution using Boubaker Polynomials Expansion Scheme (BPES). Nano Biomed Eng 2010; 2(1): 8-14.

72

Chen SH, Ji YX, Lian Q, Wen YL, Shen HB, Nengqin Jia NQ. Gold Nanorods Coated with Multilayer Polyelectrolyte as Intracellular delivery Vector of Antisense Oligonucleotides. Nano Biomed Eng 2010; 2(1): 15-23.

73

Li YQ, Li ZY, Zhou XP, Yang P. Detection of Nano Eu2O3 in Cells and Study of its Biological Effects. Nano Biomed Eng 2010; 2(1): 24-30.doi: 10.5101/nbe.v2i1.p24-30

74

Wang T, Hu Y, Zhang L, Jiang L, Chen Z, He NY: Erythropoietin Nanopariticles. Therapy for Cerebral Ischemic Injury and Metabolize in Kidney and Liver. Nano Biomed Eng 2010; 2(1): 31-39.

75

Yin DG, Zhang L, Xie CJ, Liu BH, Zhang L. Preparation and Characterization of DPPDA-Eu3+ Doped Silica Fluorescent Nanoparticles. Nano Biomed Eng 2010; 2(1): 40-44. doi: 10.5101/nbe.v2i1.p40-44

76

Cui DX, Li Q, Huang P, Wang K, Kong YF, Zhang H, You XG, He R, Song H, Wang JP, Bao CC, Asahi T, Gao F, Osaka T. Real time PCR based on Fluorescent Quenching of Mercaptoacetic AcidModified CdTe Quantum Dots for Ultrasensitive Specific Detection of Nucleic Acids. Nano Biomed Eng 2010; 2(1): 45-55. doi: 10.5101/nbe.v2i1.p45-55

77

Chen F, Huang P, Mo XM. Electrospinning of Heparin Encapsulated P(LLA-CL) Core/Shell Nanofibers. Nano Biomed Eng 2010; 2(1): 56-60. doi: 10.5101/nbe.v2i1.p56-60

78

Ji JJ, Ruan J, Cui DX. Advances of Nanotechnology in the Stem Cells Research and Development. Nano Biomed Eng 2010; 2(1): 67-90.

79

Cohen-Sela E, Chorny M, Gutman D, Komemi S, Koroukhov N, Golomb G. Characterization of Monocytes-targeted Nanocarriers Biodistribution in Leukocytes in ex-vivo and in-vivo Models. Nano Biomed Eng 2010; 2(2): 91-99.

80

Bagul M, Kakumanu S, Wilson T, Nicolosi R. In vitro Evaluation of Antiproliferative Effects of Self-assembling Nanoemulsion of Paclitaxel on Various Cancer Cell Lines. Nano Biomed Eng 2010; 2(2): 100-108.

81

Yin DG, Liu BH, Zhang L, Xie CJ, Zhang L. Synthesis of Ru(bpy)3-doped Silica Nanoparticle and Its Application in Fluorescent Immunoassay. Nano Biomed Eng 2010; 2(2): 117-120.

82

Liu J, Zhang B. The Study on Electrochemical Behaviors of the Interactions between Daunorubicin Hydrochloride and BSA. Nano Biomed Eng 2010; (2): 138-142.

83

Liu B, Deng Y, Qin BB, Li ZY, He HY. Biological Application of Digital Microfluidics Technology. Nano Biomed Eng 2010; 2(2): 149-154.

84

Meng C, Xiong YL, Zhuang WL, Wang H, Shi XA, Guo YH. Development of a Rapid and Convenient Method for Sampling Airborne Virus based on Nanoparticle Adsorption. Nano Biomed Eng 2010; 2(3): 171-176.

85

Liu Y, Niu TS, Zhang L, Yang JS. Review on nano-drugs. Natural Science 2010; 2(1):41-48, doi:10.4236/ns.2010.21006

Nano Biomedicine and Engineering
Pages 73-83
Cite this article:
Liu C. Research and Application of Targeting Nano-Drugs. Nano Biomedicine and Engineering, 2011, 3(2): 73-83. https://doi.org/10.5101/nbe.v3i2.p73-83

360

Views

8

Downloads

0

Crossref

7

Scopus

Altmetrics

Published: 30 June 2011
© 2011 C. Liu, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return