PDF (1.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Research Progress of Citrus Fiber and Its Application in Dairy Products

Shanghai Engineering Research Center of Dairy Biotechnology, State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy Co. Ltd., Shanghai 200436, China
Show Author Information

Abstract

Citrus fiber is a kind of natural dietary fiber extracted from the peel of citrus fruits. It has many physiological functions such as lowering blood sugar, lowering blood lipid and regulating intestinal balance. The internal structure, physicochemical properties and processing properties of citrus fibers from different citrus fruits are different. At present, the commonly used extraction processes include physical, chemical and biological methods. How to improve the yield of the final product has always been a difficulty faced by the citrus industry. Citrus fiber has excellent water-holding capacity (WHC), emulsifying capacity and apparent viscosity, and it is widely used in the processing of dairy products. In addition, citrus fiber plays an irreplaceable role in the development of clean-label dairy products. This paper reviews the physicochemical properties, extraction processes and application in dairy products of citrus fiber, which is of reference significance for the research and application of citrus fiber.

CLC number: TS202.1 Document code: A Article ID: 1671-5187(2023)02-0059-06

References

[1]

JIANG Ni, JIN Longfei, SILVA J A T, et al. Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch[J]. Scientia Horticulturae, 2014, 168: 73-80. DOI:10.1016/j.scienta.2014.01.021.

[2]
IZQUIERDO L, SENDRA J M. Citrus fruits|Composition and characterization[M]//CABALLERO B. Encyclopedia of food sciences and nutrition. Salt Lake City: Academic Press, 2003: 1335-1341. DOI:10.1016/B0-12-227055-X/00241-8.
[3]

LIU Yuqiu, HE E, TANUMIHARDJO S A. History, global distribution, and nutritional importance of citrus fruits[J]. Comprehensive Reviews in Food Science and Food Safety, 2012, 11(6): 530-545. DOI:10.1111/j.1541-4337.2012.00201.x.

[4]

HUANG Jiayi, LIAO Jinsong, QI Junru, et al. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel[J]. Food Hydrocolloids, 2021, 110: 106140. DOI:10.1016/j.foodhyd.2020.106140. 2019: 2-3. DOI:10.27151/d.cnki.ghnlu.2019.002774.

[7]

HUA Mei, LU Jiaxi, QU Di, et al. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: a potential functional ingredient[J]. Food Chemistry, 2019, 286: 522-529. DOI:10.1016/j.foodchem.2019.01.114.

[8]

ALBA K, MACNAUGHTAN W, LAWS A P, et al. Fractionation and characterisation of dietary fibre from blackcurrant pomace[J]. Food Hydrocolloids, 2018, 81: 398-408 . DOI:10.1016/j.foodhyd.2018.03.023.

[10]

HE Yang, WANG Bixiang, WEN Liankui, et al. Effects of dietary fiber on human health[J]. Food Science and Human Wellness, 2022, 11(1): 1-10. DOI:10.1016/j.fshw.2021.07.001.

[11]

ANDERSON J W, BAIRD P, DAⅥS R H, et al. Health benefits of dietary fiber[J]. Nutrition Reviews, 2009, 67(4): 188-205. DOI:10.1111/j.1753-4887.2009.00189.x.

[12]

CHAPKIN R S, NAVARRO S L, HULLAR M A J, et al. Diet and gut microbes act coordinately to enhance programmed cell death and reduce colorectal cancer risk[J]. Digestive Diseases and Sciences, 2020, 65(3): 840-851. DOI:10.1007/s10620-020-06106-8.

[13]

DAHL C, CRICHTON M, JENKINS J, et al. Evidence for dietary fibre modification in the recovery and prevention of reoccurrence of acute, uncomplicated diverticulitis: a systematic literature review[J]. Nutrients, 2018, 10(2): 1-18. DOI:10.3390/nu10020137.

[14]

GIANFREDI V, NUCCI D, SALVATORI T, et al. Rectal cancer: 20% risk reduction tanks to dietary fibre intake: systematic review and meta-analysis[J]. Nutrients, 2019, 11(7): 1-21. DOI:10.3390/nu11071579.

[15]

WILSON A S, KOLLER K R, RAMABOLI M C, et al. Diet and the human gut microbiome: an international review[J]. Digestive Diseases and Sciences, 2020, 65(3): 723-740. DOI:10.1007/s10620-020-06112-w.

[16]

XU Tong, WU Xinyue, LIU Jia, et al. The regulatory roles of dietary fibers on host health via gut microbiota-derived short chain fatty acids[J]. Current Opinion in Pharmacology, 2022, 62: 36-42. DOI:10.1016/j.coph.2021.11.001.

[17]

QI Junru, SONG Liwen, ZENG Weiqi, et al. Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network[J]. Food Chemistry, 2021, 343: 1-39. DOI:10.1016/j.foodchem.2020.128523.

[18]

MARÍN F R, SOLER-RⅣAS C, BENAVENTE-GARCÍA O, et al. By-products from different citrus processes as a source of customized functional fibres[J]. Food Chemistry, 2007, 100(2): 736-741. DOI:10.1016/j.foodchem.2005.04.040.

[19]

LUNDBERG B. Using highly expanded citrus fiber to improve the quality and nutritional properties of foods[J]. Cereal Foods World, 2005, 5(50): 248-252.

[20]

KIESERLING K, VU T M, DRUSCH S, et al. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt[J]. Food Hydrocolloids, 2019, 94: 152-163. DOI:10.1016/j.foodhyd.2019.02.051.

[21]

MILLER R A. Increased yield of bread containing citrus peel fiber[J]. Cereal Chemistry, 2011, 88(2): 174-178. DOI:10.1094/cchem-11-10-0161.

[22]

POWELL M, SEBRANEK J, PRUSA K, et al. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork bologna sausage[J]. Meat Science, 2019, 157: 107881-107883. DOI:10.1016/j.meatsci.2019.107883.

[23]

GEDIKOGLU A, CLARKE A D. The effect of citrus fiber on quality of ground beef meatballs[J]. Meat Science, 2014, 96(1): 463. DOI:10.1016/j.meatsci.2013.07.086.

[24]

LIUTKEVIČIUS A, SPEIČIENĖ V, MIEŽELIENĖ A, et al. Impact of citrus fiber on the physical and sensory characteristics of low fat sour cream[J]. Food Chemistry and Technology, 2013, 47(2): 69-75.

[27]

LUNDBERG B, PAN X, WHITE A, et al. Rheology and composition of citrus fiber[J]. Journal of Food Engineering, 2014, 125: 97-104. DOI:10.1016/j.jfoodeng.2013.10.021.

[29]

OECHSLIN R, LUTZ MV, AMADO R. Pectic substances isolated from apple cellulosic residue structural characterisation of a new type of rhamnogalacturonan I[J]. Carbohydrate Polymers, 2003, 51: 301-310. DOI:10.1016/s0144-8617(02)00214-x.

[30]

LIN D, LOPEZ-SANCHEZ P, GIDLEY M J. Interactions of pectins with cellulose during its synthesis in the absence of calcium[J]. Food Hydrocolloids, 2016, 52: 57-68. DOI:10.1016/j.foodhyd.2015.06.004.

[32]

LIU Chengmei, LIANG Ruihong, DAI Taotao, et al. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch[J]. Food Hydrocolloids, 2016, 57: 55-61. DOI:10.1016/j.foodhyd.2016.01.015.

[33]

ZHUANG Xinbo, JIANG Xiping, HAN Minyi, et al. Influence of sugarcane dietary fiber on water states and microstructure of myofibrillar protein gels[J]. Food Hydrocolloids, 2016, 57: 253-261. DOI:10.1016/j.foodhyd.2016.01.029.

[34]

GUO Yiting, LIU Wan, WU Bengang, et al. Modification of garlic skin dietary fiber with twin-screw extrusion process and in vivo evaluation of Pb binding[J]. Food Chemistry, 2018, 268: 550-557. DOI:10.1016/j.foodchem.2018.06.047.

[35]

SANGNARK A, NOOMHORM A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse[J]. Food Chemistry, 2003, 80(2): 221-229. DOI:10.1016/s0308-8146(02)00257-1.

[36]

CHAU Chifai, WANG Yiting, WEN Yuling. Different micronization methods significantly improve the functionality of carrot insoluble fibre[J]. Food Chemistry, 2007, 100(4): 1402-1408. DOI:10.1016/j.foodchem.2005.11.034.

[38]

PIMENOVA N V, HANLEY T R. Effect of corn stover concentration on rheological characteristics[J]. Applied Biochemistry and Biotechnology, 2004, 114(1/3): 347-360. DOI:10.1385/abab:114:1-3:347.

[39]

AGODA-TANDJAWA G, MAZOYER J, WALLECAN J, et al. Effects of sucrose addition on the rheological properties of citrus peel fiber suspensions before and after drying[J]. Food Hydrocolloids, 2020, 101: 105473. DOI:10.1016/j.foodhyd.2019.105473.

[40]

JIANG Zhanmei, MU Sinan, MA Chenglong, et al. Consequences of ball milling combined with high-pressure homogenization on structure, physicochemical and rheological properties of citrus fiber[J]. Food Hydrocolloids, 2022, 127: 107515. DOI:10.1016/j.foodhyd.2022.107515.

[42]

CRISPÍN-ISIDRO G, LOBATO-CALLEROS C, ESPINOSA-ANDREWS H, et al. Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt[J]. LWT-Food Science and Technology, 2015, 62(1): 438-444. DOI:10.1016/j.lwt.2014.06.042.

[43]

CHAU Chifai, WEN Yuling, WANG Yiting. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibers[J]. Journal of the Science of Food and Agriculture, 2006, 86(14): 2380-2386. DOI:10.1002/jsfa.2628.

[48]

PARK K H, LEE K Y, LEE H G. Chemical composition and physicochemical properties of barley dietary fiber by chemical modification[J]. International Journal of Biological Macromolecules, 2013, 60: 360-365. DOI:10.1016/j.ijbiomac.2013.06.024.

[51]

ZHANG Yue, QI Junru, ZENG Weiqi, et al. Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment[J]. Food Chemistry, 2019, 311: 125873. DOI:10.1016/j.foodchem.2019.125873.

[55]

SHIN J S, KIM B H, KIM H S, et al. Optimization of pea protein and citrus fiber contents for plant based stirred soymilk yogurt using response surface methodology[J]. Food Science and Biotechnology, 2022, 31(13): 1691-1701. DOI:10.1007/s10068-022-01180-2.

[56]

YI Tian, HUANG Xingjian, PAN Siyi, et al. Physicochemical and functional properties of micronized jincheng orange by-products (Citrus sinensis Osbeck) dietary fiber and its application as a fat replacer in yogurt[J]. International Journal of Food Sciences and Nutrition, 2014, 65(5): 565-572. DOI:10.3109/09637486.2014.898252.

[57]

CRIZEL T M, JABLONSKI A, RIOS A O, et al. Dietary fiber from orange byproducts as a potential fat replacer[J]. LWT-Food Science and Technology, 2023, 53(1): 9-14. DOI:10.1016/j.lwt.2013.02.002.

[58]

ERKAYA-KOTAN T. In vitro angiotensin converting enzyme (ACE)-inhibitory and antioxidant activity of probiotic yogurt incorporated with orange fibre during storage[J]. Journal of Food Science and Technology, 2020(4): 1-11. DOI:10.1007/s13197-020-04272-1.

[59]

CASAROTTI S N, BORGONOVI T F, BATISTA C L F M, et al. Guava, orange and passion fruit by-products: characterization and its impacts on kinetics of acidification and properties of probiotic fermented products[J]. LWT-Food Science and Technology, 2018, 98: 69-76. DOI:10.1016/j.lwt.2018.08.010.

[60]

SENDRA E, FAYOS P, LARIO Y, et al. Incorporation of citrus fibers in fermented milk containing probiotic bacteria[J]. Food Microbiology, 2008, 25(1): 13-21. DOI:10.1016/j.fm.2007.09.003.

Journal of Dairy Science and Technology
Pages 59-64
Cite this article:
ZHANG Y. Research Progress of Citrus Fiber and Its Application in Dairy Products. Journal of Dairy Science and Technology, 2023, 46(2): 59-64. https://doi.org/10.7506/rykxyjs1671-5187-20230213-008
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return