Probiotics are living microorganisms that provide health benefits to the host when consumed in certain amounts. Autoimmune diseases including systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis are immune diseases that cause tissue and organ damage due to immune dysfunction in the body. Patients with autoimmune diseases often suffer from intestinal flora disorders. Probiotic intervention can restore intestinal microecological balance, avoiding the toxic side effects of medications, so it provides a new strategy for the prevention and treatment of autoimmune diseases. This article reviews the recent progress in research on autoimmune diseases and presents the current status and future prospects of the application of probiotic intervention strategies in autoimmune diseases.
KIANG M V, CHIN E T, HUYNH B Q, et al. Correction to Lancet Infect Dis 2021: routine asymptomatic testing strategies for airline travel during the COVID-19 pandemic: a simulation study[J]. The Lancet Infectious Disease, 2021, 21(8): e208. DOI:10.1016/S1473-3099(21)00134-1.
COOPER G S, STROEHLA B C. The epidemiology of autoimmune diseases[J]. Autoimmunity Reviews, 2003, 2(3): 119-125. DOI:10.1016/s1568-9972(03)00006-5.
COOPER G S, BYNUM M L, SOMERS E C. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases[J]. Journal of Autoimmunity, 2009, 33(3/4): 197-207. DOI:10.1016/j.jaut.2009.09.008.
TSOKOS G C. Systemic lupus erythematosus[J]. The New England Journal of Medicine, 2011, 365(22): 2110-2121. DOI:10.1056/nejmra1100359.
ALAMANOS Y, DROSOS A A. Epidemiology of adult rheumatoid arthritis[J]. Autoimmunity Reviews, 2005, 4(3): 130-136. DOI:10.1016/j.autrev.2004.09.002.
LERNER A, JEREMIAS P, MATTHIAS T. The world incidence and prevalence of autoimmune diseases is increasing[J]. International Journal of Celiac Disease, 2015, 3(4): 151-155. DOI:10.12691/ijcd-3-4-8.
REES F, DOHERTY M, GRAINGE M J, et al. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies[J]. Rheumatology, 2017, 56(11): 1945-1961. DOI:10.1093/rheumatology/kex260.
MIYAKE K, SHIOZAWA N, NAGAO T, et al. Trogocytosis of peptide-MHC class Ⅱ complexes from dendritic cells confers antigen-presenting ability on basophils[J]. Proceedings of the National Academy of Sciences, 2017, 114(5): 1111-1116. DOI:10.1073/pnas.1615973114.
GRIGORIADIS N, VAN PESCH V. A basic overview of multiple sclerosis immunopathology[J]. European Journal of Neurolog, 2015, 22: 3-13. DOI:10.1111/ene.12798.
DONG Yifei, YONG V W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis[J]. Nature Reviews Neurology, 2019, 15(12): 704-717. DOI:10.1038/s41582-019-0253-6.
OKSENBERG J R, BARANZINI S E, SAWCER S, et al. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis[J]. Nature Reviews Genetics, 2008, 9(7): 516-526. DOI:10.1038/nrg2395.
CORREALE J, GAITÁN M I. Multiple sclerosis and environmental factors: the role of vitamin D, parasites, and Epstein-Barr virus infection[J]. Acta Neurologica Scandinavica, 2015, 132(S199): 46-55. DOI:10.1111/ane.12431.
KAMADA N, SEO S U, CHEN G Y, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nature Reviews Immunology, 2013, 13(5): 321-335. DOI:10.1038/nri3430.
BAX M, VAN H J, HUIZINGA T W, et al. Genetics of rheumatoid arthritis: what have we learned?[J]. Immunogenetics, 2011, 63(8): 459-466. DOI:10.1007/s00251-011-0528-6.
SILMAN A J, PEARSON J E. Epidemiology and genetics of rheumatoid arthritis[J]. Arthritis Research and Therapy, 2002, 4(3): S265-S272. DOI:10.1186/ar578.
VITALES-NOYOLA M, HERNÁNDEZ-CASTRO B, ALVARADOHERNÁNDEZ D, et al. Levels of pathogenic Th17 and Th22 cells in patients with rheumatoid arthritis[J]. Journal of Immunology Research, 2022: 5398743. DOI:10.1155/2022/5398743.
ABU-HAKMEH A E, FLECK A K M, WAN L Q. Temporal effects of cytokine treatment on lubricant synthesis and matrix metalloproteinase activity of fibroblast-like synoviocytes[J]. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13: 87-98. DOI:10.1002/term.2771.
KATO M, OSPELT C, GAY R E, et al. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts[J]. Arthritis and Rheumatology, 2014, 66: 40-48. DOI:10.1002/art.38190.
ZHANG Lei, LI Yonggang, LI Yuhua, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis[J]. PLoS ONE, 2012, 7(4): e31000. DOI:10.1371/journal.pone.0031000.
ZHAO Ling, JIANG Zhenyu, JIANG Yanfang, et al. IL-22+CD4+ T cells in patients with rheumatoid arthritis[J]. International Journal of Rheumatic Diseases, 2013, 16(5): 518-526. DOI:10.1111/1756-185X.12099.
MIYAZAKI Y, NAKAYAMADA S, KUBO S, et al. Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis[J]. Frontiers in Immunology, 2018, 9: 2901. DOI:10.3389/fimmu.2018.02901.
WEN Hongyan, LIU Yang, LI Jinchan, et al. Inhibitory effect and mechanism of 1,25-dihydroxy vitamin D3 on RANKL expression in fibroblast-like synoviocytes and osteoclast-like cell formation induced by IL-22 in rheumatoid arthritis[J]. Clinical and Experimental Rheumatology, 2018, 36(5): 798-805.
MANDL T, MARSAL J, OLSSON P, et al. Severe intestinal dysbiosis is prevalent in primary Sjögren’s syndrome and is associated with systemic disease activity[J]. Arthritis Research and Therapy, 2017, 19(1): 237. DOI:10.1186/s13075-017-1446-2.
ZHOU Chen, ZHAO Hui, XIAO Xinyue, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. Journal of Autoimmunity, 2020, 107: 102360. DOI:10.1016/j.jaut.2019.102360.
GUO Mengchen, WANG Huixia, XU Sixie, et al. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus[J]. Gut Microbes, 2020, 11(6): 1758-1773. DOI:10.1080/19490976.2020.1768644.
AZZOUZ D, OMARBEKOVA A, HEGUY A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal[J]. Annals of the Rheumatic Diseases, 2019, 78(7): 947-956. DOI:10.1136/annrheumdis-2018-214856.
FORBES J D, VAN DOMSELAAR G, BERNSTEIN C N. The gut microbiota in immune-mediated inflammatory diseases[J]. Frontiers in Immunology, 2016, 7: 1081. DOI:10.3389/fmicb.2016.01081.
OCHOA-REPÁRAZ J, KIRBY T O, KASPER L H. The gut microbiome and multiple sclerosis[J]. Cold Spring Harbor Perspectives in Medicine, 2018, 8(6): a029017. DOI:10.1101/cshperspect.a029017.
SCHER J U, ANDREW S, LONGMAN R S, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis[J]. eLife, 2013, 2(1629): e01202. DOI:10.7554/eLife.01202.
VOLKMANN E R, CHANG Y L, BARROSO N, et al. Association of systemic sclerosis with a unique colonic microbial consortium[J]. Arthritis and Rheumatology, 2016, 68(6): 1483-1492. DOI:10.1002/art.39572.
MANFREDO VIEIRA S, HILTENSPERGER M, KUMAR V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and hunman[J]. Science, 2018, 359(6380): 1156-1161. DOI:10.1126/science.aar720.
RUFF W E, DEHNER C, KIM W J, et al. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity[J]. Cell Host Microbe, 2019, 26: 100-113. DOI:10.1016/j.chom.2019.05.003.
GREILING T M, DEHNER C, CHEN X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus[J]. Science Translational Medicine, 2018, 10(434): eaan2306. DOI:10.1126/scitranslmed.aan2306.
ZHOU Chen, ZHAO Hui, XIAO Xinyue, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. Journal of Autoimmunity, 2020, 107: 102360. DOI:10.1016/j.jaut.2019.102360.
SACHIKO M, SANGWAN K, WATARU S, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and Ⅳ clusters[J]. PLoS ONE, 2015, 10(9): e0137429. DOI:10.1371/journal.pone.0137429.
FELLOWS R, DENIZOT J, STELLATO C, et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases[J]. Nature Communications, 2018, 9(1): 105. DOI:10.1038/s41467-017-02651-5.
VIEIRA A T, MACIA L, GALVÃO I, et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout[J]. Arthritis and Rheumatology, 2015, 67(6): 1646-1656. DOI:10.1002/art.39107.
ROSSER E C, PIPER C J M, MATEI D E, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metabolism, 2020, 31: 837-851. DOI:10.1016/j.cmet.2020.03.003.
SANCHEZ H N, MORONEY J B, GAN H, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids[J]. Nature Communications, 2020, 11(1): 60. DOI:10.1038/s41467-019-13603-6.
KIM T S, SHIN E C. The activation of bystander CD8+ T cells and their roles in viral infection[J]. Experimental and Molecular Medicine, 2019, 51: 154. DOI:10.1038/s12276-019-0316-1.
KIDD B A, HO P P, SHARPE O, et al. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination[J]. Arthritis Research and Therapy, 2008, 10(5): R119. DOI:10.1186/ar2523.
BAGAVANT H, ARASZKIEWICZ A M, INGRAM J K, et al. Immune response to Enterococcus gallinarum in lupus patients is associated with a subset of lupus-associated autoantibodies[J]. Frontiers in Immunology, 2021, 12: 635072. DOI:10.3389/fimmu.2021.635072.
LEWIS J, CHEN E, BALDASSANO R, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease[J]. Cell Host Microbe, 2015, 18: 489-500. DOI:10.1016/j.chom.2015.09.008.
RUPA P, MINE Y. Recent advances in the role of probiotics in human inflammation and gut health[J]. Journal of Agricultural and Food Chemistry, 2012, 60(34): 8249-8256. DOI:10.1021/jf301903t.
BINDA S, HILL C, JOHANSEN E, et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements[J]. Frontiers in Microbiology, 2020, 11: 1662. DOI:10.3389/fmicb.2020.01662.
YAQOOB M U, WANG G, WANG M. An updated review on probiotics as an alternative of antibiotics in poultry: a review[J]. Animal Bioscience, 2022, 35(8): 1109-1120. DOI:10.5713/ab.21.0485.
SALEHIPOUR Z, HAGHMORAD D, SANKIAN M, et al. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance[J]. Biomedicine and Pharmacotherapy, 2017, 95: 1535-1548. DOI:10.1016/j.biopha.2017.08.117.
KWON H K, KIM G C, KIM Y, et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response[J]. Clinical Immunology, 2013, 146(3): 217-227. DOI:10.1016/j.clim.2013.01.001.
HASHEMI B, ABDOLLAHI M, ABBASPOUR-AGHDAM S, et al. The effect of probiotics on immune responses and their therapeutic application: a new treatment option for multiple sclerosis[J]. Biomedicine and Pharmacotherapy, 2023, 159: 114195. DOI:10.1016/j.biopha.2022.114195.
SHADNOUSH M, NAZEMIAN V, MANAHEJI H, et al. The effect of orally administered probiotics on the behavioral, cellular, and molecular aspects of adjuvant-induced arthritis[J]. Basic and Clinical Neuroscience, 2018, 9(5): 325-336. DOI:10.32598/bcn.9.5.325.
CORREALE J, HOHLFELD R, BARANZINI S E. The role of the gut microbiota in multiple sclerosis[J]. Nature Reviews Neurology, 2022, 18(9): 544-558. DOI:10.1038/s41582-022-00697-8.
CHEN J, CHIA N, KALARI K R, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls[J]. Scientific Reports, 2016, 6(1): 28484. DOI:10.1038/srep28484.
MALDONADO G, CAROLINA I C, SILVIA L D, et al. Beneficial effects of probiotic consumption on the immune system[J]. Annals of Nutrition and Metabolism, 2019, 74(2): 115-124. DOI:10.1159/000496426.
MORSHEDI M, HASHEMI R, MOAZZEN S, et al. Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a systematic review[J]. Journal of Neuroinflammation, 2019, 16(1): 231. DOI:10.1186/s12974-019-1611-4.
FRECH T M, KHANNA D, MARANIAN P, et al. Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/distention[J]. Clinical and Experimental Rheumatology, 2011, 29: S22-S25. DOI:10.1038/nrrheum.2010.225.
ISOLAURI E, SUTAS Y, KANKAANPAA P, et al. Probiotics: effects on immunity[J]. The American Journal of Clinical Nutrition, 2001, 73(2): 444S-450S. DOI:10.1093/ajcn/73.2.444s.
HASHEMI B, ABDOLLAHI M, ABBASPOUR-AGHDAM S, et al. The effect of probiotics on immune responses and their therapeutic application: a new treatment option for multiple sclerosis[J]. Biomedicine and Pharmacotherapy, 2023, 159: 114195. DOI:10.1016/j.biopha.2022.114195.
MAYNARD C, ELSON C, HATTON R, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489: 231-241. DOI:10.1038/nature11551.
ROSENBLUM M, WAY S, ABBAS A. Regulatory T cell memory[J]. Nature Reviews Immunology, 2016, 16: 90-101. DOI:10.1038/nri.2015.1.
GALDEANO C M, CAZORLA S I, DUMIT J M L, et al. Beneficial effects of probiotic consumption on the immune system[J]. Annals Nutrition and Metabolism, 2019, 74(2): 115-124. DOI:10.1159/000496426.
ARDAIN A, MARAKALALA M J, LESLIE A. Tissue-resident innate immunity in the lung[J]. Immunology, 2020, 159(3): 245-256. DOI:10.1159/000496426.
JANG S E, JOH E H, AHN Y T, et al. Lactobacillus casei HY7213 ameliorates cyclophosphamide-induced immunosuppression in mice by activating NK, cytotoxic T cells and macrophages[J], Immunopharmacology and Immunotoxicology, 2013, 35(3): 396-402. DOI:10.3109/08923973.2013.789055.
MU Q, TAVELLA V J, LUO X M. Role of Lactobacillus reuteri in human health and diseases[J]. Frontiers in Microbiology, 2018, 9: 757. DOI:10.3389/fmicb.2018.00757.
DARGAHIN, JOHNSON J, DONKOR O, et al. Immunomodulatory effects of probiotics can they be used to treat allergies and autoimmune diseases?[J]. Maturitas, 2019, 119: 25-38. DOI:10.1016/j.maturitas.2018.11.002.
DARMA A, ATHIYYAH A F, RANUH R G, et al. Effects of probiotics on the enhancement of the innate mucosal immune response against pathogenic bacteria[J]. Iranian Journal of Microbiology, 2020, 12(5): 445-450. DOI:10.18502/ijm.v12i5.4606.
GALGANI M, BRUZZANITI S, ROCCA C L, et al. Immunometabolism of regulatory T cells in cancer[J]. Molecular Aspects of Medicine, 2020, 77: 100936. DOI:10.1016/j.mam.2020.100936.
SPILJAR M, MERKLER D, TRAJKOVSKI M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs[J]. Frontier in Immunology, 2017, 8: 1353. DOI:10.3389/fimmu.2017.01353.
JIAO Yuhao, WU Li, HUNTINGTON N D, et al. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases[J]. Frontier in Immunololgy, 2020, 11: 282. DOI:10.3389/fimmu.2020.00282.
MA Hongdi, TAO Wanyin, ZHU Shu. Tlymphocytes in the intestinal mucosa: defense and tolerance[J]. Cellular and Molecular Immunology, 2019, 16: 216-224. DOI:10.1038/s41423-019-0208-2.
HIROTA K, TURNER J E, VILLA M, et al. Plasticity of TH17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses[J]. Nature Immunology, 2013, 14(4): 372. DOI:10.1038/ni.2552.
GHADIMI D, HELWIG U, SCHREZENMEIR J, et al. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system[J]. Journal of Leukocyte Biology, 2012, 92(4): 895-911. DOI:10.1189/jlb.0611286.