In this study, ion exchange chromatography was employed to prepare high-purity α-lactalbumin from whey protein powder obtained from raw cow’s milk by sequential membrane separation and spray drying. The results showed that α-lactalbumin constituted 21.04% of the true protein in the permeate obtained using a 50-nm pore-sized ceramic membrane with three-fold concentration, one cycle of microfiltration and two cycles of washing, which was higher than that obtained using a 100-nm pore-sized ceramic membrane (15.84%). The permeate was spray dried and separated by ion exchange chromatography. Good chromatographic separation of α-lactalbumin and β-lactoglobulin was achieved with increasing NaCl concentration from 0 to 0.5 mol/L at up to 10 column volumes, and 98.18% pure α-lactalbumin and 97.82% pure β-lactoglobulin were obtained. The results of this study provide support for the industrial preparation of high-purity α-lactalbumin.
BECKMAN S L, ZULEWSKA J, NEWBOLD M, et al. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes[J]. Journal of Dairy Science, 2010, 93(10): 4506-4517. DOI:10.3168/jds.2010-3261.
NUNES L, DE PAULA I L, CRISTIANINI M, et al. Aging of infant formulas containing proteins from different sources[J]. LWT-Food Science and Technology, 2021, 152: 112299. DOI:10.1016/j.lwt.2021.112299.
ZHANG J S, LAI S Y, ZHANG Y, et al. Multiple reaction monitoringbased determination of bovine α-lactalbumin in infant formulas and whey protein concentrates by ultra-high performance liquid chromatography-tandem mass spectrometry using tryptic signature peptides and synthetic peptide standards[J]. Analytica Chimica Acta, 2012, 727: 47-53. DOI:10.1016/j.aca.2012.03.034.
WANG J, AALAEI K, SKIBSTED L H, et al. Calcium bioaccessibility increased during gastrointestinal digestion of α-lactalbumin and β-lactoglobulin[J]. Food Research International, 2023, 1641: 112415. DOI:10.1016/j.foodres.2022.112415.
FAN Y T, HE Q Y, GAN C, et al. Investigation of binding interaction between bovine α-lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking[J]. Food Chemistry, 2022, 384: 132509. DOI:10.1016/j.foodchem.2022.132509.
GENG X L, KIRKENSGAARD J J K, ARLETH L, et al. The influence of pH, protein concentrat-ion and calcium ratio on the formation and structure of nanotubes from partially hydrolyzed bovine α-lactalbumin[J]. Soft Matter, 2019, 15(24): 4787-4796. DOI:10.1039/c9sm00127a.
LIU Y Q, WU Q Z, ZHANG J, et al. Food emulsions stabilized by proteins and emulsifiers: a review of the mechanistic explorations[J]. International Journal of Biological Macromolecules, 2024, 261(Part 1): 129795. DOI:10.1016/j.ijbiomac.2024.129795.
LAJNAF R, ATTIA H, AYADI M A. Technological properties and biological activities of camel α-lactalbumin-a review[J]. International Dairy Journal, 2023, 139: 105563. DOI:10.1016/j.idairyj.2022.105563.
KUMAR A, KUMAR M H S, RAJANI C S, et al. Dipeptidyl peptidase-Ⅳ inhibitory potential of α-lactalbumin extracted from milk of Gir cows: a Bos indicus species[J]. International Journal of Dairy Technology, 2022, 75(3): 527-537. DOI:10.1111/1471-0307.12868.
NICOLE H, ULRICH K. Continuous centrifugal separation of selectively precipitated α-lactalbumin[J]. International Dairy Journal, 2020, 101: 104566. DOI:10.1016/j.idairyj.2019.104566.
M.EUGENIA L, SILVIA A, CARLOS M. α-Lactalbumin precipitation from commercial whey protein concentrates[J]. Separation and Purification Technology, 2007, 52(3): 446-453. DOI:10.1016/j.seppur.2006.05.024.
KATARINA L J, SERONEI C C, ULRICH K, et al. Comparison of selective hydrolysis of α-lactalbumin by acid protease A and protease M as alternative to pepsin: potential for β-lactoglobulin purification in whey proteins[J]. Journal of Dairy Research, 2019, 86(1): 114-119. DOI:10.1017/s0022029919000086.
GHARBI N, MARCINIAK A, DOYEN A. Factors affecting the modification of bovine milk proteins in high hydrostatic pressure processing: an updated review[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5): 4274-4293. DOI:10.1111/1541-4337.13012.
MAZZEI R, SZYMCZAK A M, DRIOLI E, et al. High purity of α-lactalbumin from binary protein mixture by charged UF membrane far from the isoelectric point to limit fouling[J]. Applied Sciences, 2021, 11(19): 9167. DOI:10.3390/app11199167.
MAO X, ZHANG G F, LI C, et al. One-step method for the isolation of α-lactalbumin and β-lactoglobulin from cow’s milk while preserving their antigenicity[J]. International Journal of Food Properties, 2016, 20(4): 792-800. DOI:10.1080/10942912.2016.1181649.
MARCINIAK A, SUWAL S, BRITTEN M, et al. The use of high hydrostatic pressure to modulate milk protein interactions for the production of an α-lactalbumin enriched-fraction[J]. Green Chemistry, 2018, 20(2): 515-524. DOI:10.1039/c7gc03428H.
FERNANDEZ A, MENENDEZ V, RIERA F A. α-Lactalbumin solubilisation from a precipitated whey protein concentrates fraction: pH and calcium concentration effects[J]. International Journal of Food Science and Technology, 2012, 47(3): 467-474. DOI:10.1111/j.1365-2621.2011.0286x.
JØRGENSEN C E, ABRAHAMSEN R K, RUKKE E O, et al. Optimization of protein fractionation by skim milk microfiltration: choice of ceramic membrane pore size and filtration temperature[J]. Journal of Dairy Science, 2016, 99(8): 6164-6179. DOI:10.3168/jds.2016-11090.
INAGAKI M, KAWAI S, IJIER X, et al. Effects of heat treatment on conformation and cell growth activity of α-lactalbumin and β-lactoglobulin from market milk[J]. BioMed Research International, 2017, 38(1): 53-59. DOI:10.2220/biomedres.38.53.
MCGUFFEY M K, EPTING K L, KELLY R M, et al. Denaturation and aggregation of three α-lactalbumin preparations at neutral pH[J]. Journal of Agricultural and Food Chemistry, 2005, 53(8): 3182-3190. DOI:10.1021/jf048863p.
JUSTYNA Z, JAROSTAW K B D. Flux and transmission of β-casein during cold microfiltration of skim milk subjected to different heat treatments[J]. Journal Dairy Science, 2018, 101(12): 10831-10843. DOI:10.3168/jds.2018-14496.
ZULEWSKA J, NEWBOLD M, BARBANO D M. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 ℃[J]. Journal Dairy Science, 2009, 92(4): 1361-1377. DOI:10.3168/jds.2008-1757.
ZULEWSKA J, NEWBOLD M, BARBANO D M. Serum protein removal from skim milk with a 3-stage, 3 × ceramic Isoflux membrane process at 50 ℃[J]. Journal Dairy Science, 2013, 96(4): 2020-2034. DOI:10.3168/jds.2012-6007.
WANG W Q, WA Y C, ZHANG X F, et al. Whey protein membrane processing methods and membrane fouling mechanism analysis[J]. Food Chemistry, 2019, 289: 468-481. DOI:10.1016/j.foodchem.2019.03.086.
RAHIMI Z, ZINATIZADEH A, ZINADINI S. Milk processing wastewater treatment in an MBR: a comparative study on the use of two synthetic anti-fouling PES-UF membranes[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103369. DOI:10.1016/j.jece.2019.103369.
FUCIÑOS C, FUCIÑOS P, ESTÉVEZ N, et al. One-step chromatographic method to purify α-lactalbumin from whey for nanotube synthesis purposes[J]. Food Chemistry, 2019, 275: 480-488. DOI:10.1016/j.foodchem.2018.09.144.
GENG X L, TOLKACH A, OTTE J, et al. Pilot-scale purification of α-lactalbumin from enriched whey protein concentrate by anion-exchange chromatography and ultrafiltration[J]. Dairy Science & Technology, 2015, 95(3): 353-368. DOI:10.1007/s13594-015-021-8.