PDF (1.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Publishing Language: Chinese | Open Access

Advances in Structure, Functional Characteristics and Application of Milk Fat Globule Membrane

Jia SHI1 Haijiao ZHANG2Feng ZHAO1Zhonghan LI2Yang ZOU2 ()
College of Food Science, Northeast Agricultural University, Harbin 150030, China
Tianjin Haihe Dairy Co. Ltd., Tianjin 300308, China
Show Author Information

Abstract

The fat in breast milk exists in the form of fat globules, which are enveloped by a unique biophysical membrane called the milk fat globule membrane. The absence of fat globules will affect the structure and stability of fat droplets, which will in turn affect lipid digestion and absorption. In an effort to make the nutritional composition of milk powder approximate as closely as possible to that of breast milk, an extensive literature has developed concerning the fat globule membrane of cow’s milk, goat’s milk and other milks both domestically and internationally. With the aim of providing a reference for the resource development and application of milk fat globule membrane resources, this article reviews recent progress in understanding the composition of the milk fat globule membrane as well as the factors affecting the structure and functional characteristics of the milk fat globule membrane such as lactation stages, feeding regimes and milk sources as well as separation, thermal processing, homogenization and non-thermal processing, and it summarizes recent advances in breast milk fat globule membrane simulation and its application in infant formula and milk products for middle-aged and elderly people.

CLC number: TS252.1 Document code: A Article ID: 1671-5187(2025)01-0046-07

References

[1]

HOLZMULLER W, KULOZIK U. Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings: a critical review[J]. International Dairy Journal, 2016, 61: 51-66. DOI:10.1016/j.idairyj.2016.03.013.

[2]

SUN Y J, ROOS Y H, MIAO S. A review of factors affecting the structure, compositions, and the techno-functionalities of bovine milk fat globule and membrane[J]. Trends in Food Science & Technology, 2024, 150: 104570. DOI:10.1016/j.tifs.2024.104570.

[3]

JIANG H, GONG H, LI Q, et al. Differences in proteomic profiles and immunomodulatory activity of goat and cow milk fat globule membrane[J]. Food Chemistry, 2024, 455: 139885. DOI:10.1016/j.foodchem.2024.139885.

[5]

JI X X, LI X S, MA Y, et al. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk[J]. Food Chemistry, 2016, 221: 1822. DOI:10.1016/j.foodchem.2016.10.097.

[7]

RAZA G S, HERZIG K H, LEPPALUTO J. Milk fat globule membrane-a possible panacea for neurodevelopment, infections, cardiometabolic diseases, and frailty[J]. Journal of Dairy Science, 2021, 104(7): 7345-7363. DOI:10.3168/jds.2020-19649.

[8]

GUERIN J, BURGAIN J, GOMAND F, et al. Milk fat globule membrane glycoproteins: valuable ingredients for lactic acid bacteria encapsulation[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(4): 639-651. DOI:10.1080/10408398.2017.1386158.

[10]

MA Q, ZHANG X X, LI X D, et al. Novel trends and challenges in fat modification of next-generation infant formula: considering the structure of milk fat globules to improve lipid digestion and metabolism of infants[J]. Food Research International, 2023, 174: 113574. DOI:10.1016/j.foodres.2023.113574.

[14]

YAO Y P, ZHAO G Z, XIANG J Y, et al. Lipid composition and structural characteristics of bovine, caprine and human milk fat globules[J]. International Dairy Journal, 2016, 56: 64-73. DOI:10.1016/j.idairyj.2015.12.013.

[15]

SMOCZYNSKI M, STANIEWSKI B, KIELCZEWSKA K. Composition and structure of the bovine milk fat globule membrane-some nutritional and technological implications[J]. Food Reviews International, 2014, 28: 188-202. DOI:10.1080/87559129.2011.595024.

[18]

MASTORAKOU D, RUARK A, WEENEN H, et al. Sensory characteristics of human milk: association between mother’s diet and milk for bitter taste[J]. Journal of Dairy Science, 2019, 102(2): 1116-1130. DOI:10.3168/jds.2018-15339.

[19]

MCDANIEL M R, BARKER E, LEDERER C L. Sensory characterization of human milk[J]. Journal of Dairy Science, 1989, 72(5): 1149-1158. DOI:10.3168/jds.S0022-0302(89)79218-3.

[20]

THUM C, ROY N C, EVERETT D W, et al. Variation in milk fat globule size and composition: a source of bioactives for human health[J]. Critical Reviews in Food Science and Nutrition, 2021, 63(1): 87-113. DOI:10.1080/10408398.2021.1944049.

[21]

FELICE V D, OWENS R A, KENNEDY D, et al. Comparative structural and compositional analyses of cow, buffalo, goat and sheep cream[J]. Foods, 2021, 10: 2643. DOI:10.3390/foods10112643.

[22]

YANG M, DENG W, CAO X, et al. Quantitative phosphoproteomics of milk fat globule membrane in human colostrum and mature milk: new insights into changes in protein phosphorylation during lactation[J]. Journal of Agricultural and Food Chemistry, 2020, 68: 4546-4556. DOI:10.1021/acs.jafc.9b06850.

[23]

WALTER L, SHRESTHA P, FRY R, et al. Lipid metabolic differences in cows producing small or large milk fat globules: fatty acid origin and degree of saturation[J]. Journal of Dairy Science, 2020, 103: 1920-1930. DOI:10.3168/jds.2019-16775.

[24]

BAUMAN D E, GRIINARI J M. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome[J]. Livestock Production Science, 2001, 70: 15-29. DOI:10.1016/S0301-6226(01)00195-6.

[25]

TORAL P G, GERVASIS R, HERVAS G, et al. Relationship between trans-10 shift indicators and milk fat traits in dairy ewes: insights into milk fat depression[J]. Animal Feed Science and Technology, 2020, 26: 114389. DOI:10.1016/j.anifeedsci.2020.114389.

[26]

ZHANG M L, XING Z Y, HUANG Q X, et al. Effect of conjugated linoleic acid supplementation on fat globule size in raw milk[J]. International Dairy Journal, 2021, 115: 1-7. DOI:10.1016/j.idairyj.2020.104919.

[27]

HO T M, DHUNGANA P, BHANDARI B, et al. Effect of the native fat globule size on foaming properties and foam structure of milk[J]. Journal of Food Engineering, 2021, 29: 110227. DOI:10.1016/j.jfoodeng.2020.110227.

[28]

SUN Y J, ROOS Y H, MIAO S. Characterization of the microstructure, interfacial properties and crystallization behaviors of milk fat globule and membrane isolated from acidified bovine milk and sweet whey[J]. Food Hydrocolloids, 2024, 156: 110246. DOI:10.1016/j.foodhyd.2024.110246.

[29]

SUN Y J, ROOS Y H, MIAO S. Changes in milk fat globules and membrane proteins prepared from pH-adjusted bovine raw milk[J]. Foods, 2022, 11: 4107. DOI:10.3390/foods11244107.

[30]

DHUNGANA P, TRUONG T, BANSAL N, et al. A novel continuous method for size-based fractionation of natural milk fat globules by modifying the cream separator[J]. International Dairy Journal, 2021, 125: 105209. DOI:10.1016/j.idairyj.2021.105209.

[31]

CHENG W H, LIU H N, SHEN Q W, et al. A novel approach for modulating the spatial distribution of fat globules in acid milk gel and its effect on the perception of fat-related attributes[J]. Food Research International, 2021, 140: 109990. DOI:10.1016/j.foodres.2020.109990.

[32]

WANG M Q, CAO C J, WANG Y, et al. Comparison of bovine milk fat globule membrane protein retention by different ultrafiltration membranes using a label-free proteomic approach[J]. LWT-Food Science and Technology, 2021, 144: 111219. DOI:10.1016/j.lwt.2021.111219.

[33]

SUN Y J, LIU Z M, LI H J, et al. Functionality of milk protein concentrate 80 with emulsifying salts and its applications in analogue cheeses[J]. International Journal of Food Properties, 2017, 20: 2594-2607. DOI:10.1080/10942912.2016.1247096.

[34]

HANSEN S F, PETRAT-MELIN B, RASMUSSEN J T, et al. Placing pasteurization before or after microfiltration impacts the protein fat globule membrane material[J]. International Dairy Journal, 2018, 81: 35-41. DOI:10.1016/j.idairyj.2017.12.015.

[35]

WEI T, HUANG Y C, WENG C, et al. Lipid rafts may affect the coalescence of milk fat globules through phase transition after thermal treatment[J]. Food Chemistry, 2023, 399: 133867. DOI:10.1016/j.foodchem.2022.133867.

[36]

HANSEN S F, NIELSEN S D, RASMUSEN J T, et al. Disulfide bond formation is not crucial for the heat-induced interaction between β-lactoglobulin and milk fat globule membrane proteins[J]. Journal of Dairy Science, 2020, 103: 5874-5881. DOI:10.3168/jds.2019-18066.

[37]

YAN D M, ZHANG L N, ZHU Y X, et al. Changes in caprine milk fat globule membrane proteins after heat treatment using a label-free proteomics technique[J]. Foods, 2022, 11: 2705. DOI:10.3390/foods11172705.

[38]

REN Q X, LI Q M, LIU H Y, et al. Thermal and storage properties of milk fat globules treated with different homogenization pressures[J]. International Dairy Journal, 2020, 110: 104725. DOI:10.1016/j.idairyj.2020.104725.

[39]

LU N Y, WANG J Y, CHEN X, et al. The effect of adding phospholipids before homogenization on the properties of milk fat globules[J]. LWT-Food Science and Technology, 2021, 146: 111659. DOI:10.1016/j.lwt.2021.111659.

[40]

GHARBI N, STONE D, FITTIPALDI N, et al. Application of pressure homogenization on whole human milk pasteurized by high hydrostatic pressure: effect on protein aggregates in milk fat globule membrane and skim milk phases[J]. Food Chemistry, 2024, 455: 139863. DOI:10.1016/j.foodchem.2024.139863.

[41]

ANANTAWAT V, LOVEDAY S M, SINGH H, et al. Acid gelation of heat-treated recombined milk: fat globule membrane composition and gelation functionality[J]. International Dairy Journal, 2022, 125: 105243. DOI:10.1016/j.idairyj.2021.105243.

[43]

CHEMAT F, KHAN M K. Applications of ultrasound in food technology: processing, preservation and extraction[J]. Ultrasonic Sonochemistry, 2011, 18: 813-835. DOI:10.1016/j.ultsonch.2010.11.023.

[44]

MA Q, ZHOU T, WANG Z, et al. Ultrasound modification on milk fat globule membrane and soy lecithin to improve the physicochemical properties, microstructure and stability of mimicking human milk fat emulsions[J]. Ultrasonic Sonochemistry, 2024, 105: 106873. DOI:10.1016/j.ultsonch.2024.106873.

[45]

KIELCZEWSKA K, JANKOWSKA A, D́BROWSKA A, et al. The effect of high pressure treatment on the dispersion of fat globules and the fatty acid profile of caprine milk[J]. International Dairy Journal, 2020, 102: 104607. DOI:10.1016/j.idairyj.2019.104607.

[46]

SHARMA P, OEY I, EVERETT D W. Effect of pulsed electric field processing on the functional properties of bovine milk[J]. Trends in Food Science & Technology, 2014, 35: 87-101. DOI:10.1016/j.tifs.2013.11.004.

[47]

MOHAMAD A, SHAH N N A K, SULAIMAN A, et al. Impact of the pulsed electric field on physicochemical properties, fatty acid profiling, and metal migration of goat milk[J]. Journal of Food Processing and Preservation, 2020, 44: 14940. DOI:10.1111/jfpp.14940.

[48]

YANG S, SUWAL S, ANDERSEN U, et al. Effects of pulsed electric field on fat globule structure, lipase activity, and fatty acid composition in raw milk and milk with different fat globule sizes[J]. Innovative Food Science & Emerging Technologies, 2021, 67: 102548. DOI:10.1016/j.ifset.2020.102548.

[49]

CHEN X P, YU H, BAI X, et al. Proteomics and phosphoproteomics differences between human and cow milk fat globule membrane: an innovative guide for infant formula[J]. Food Chemistry, 2025, 472: 142890. DOI:10.1016/j.foodchem.2025.142890.

[50]

BRINK L B, LONNERDAL B. Milk fat globule membrane: the role of its various components in infant health and development[J]. The Journal of Nutritional Biochemistry, 2020, 85: 108465. DOI:10.1016/j.jnutbio.2020.108465.

[51]

GONG H, LI T G, LIANG D, et al. Milk fat globule membrane supplementation protects against β-lactoglobulin-induced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner[J]. Food Science and Human Wellness, 2024, 13(1): 124-136. DOI:10.26599/FSHW.2022.9250010.

[52]

DOUELLOU T, MONTEL M C, SERGENTET D, et al. Anti-adhesive properties of bovine oligosaccharides and bovine milk fat globule membrane-associated glycoconjugates against bacterial food enteropathogens[J]. Journal of Dairy Science, 2017, 100: 3348-3359. DOI:10.3168/jds.2016-11611.

[55]

LEE H, ZAVALETA N, CHEN S Y, et al. Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants[J]. npj Science of Food, 2018, 2: 6. DOI:10.1038/s41538-018-0014-8.

[56]

TEN BRUGGENCATE S J, FREDERILSEN P D, PEDERSEN S M, et al. Dietary milk-fat-globule membrane affects resistance to diarrheagenic Escherichia coli in healthy adults in a randomized, placebo-controlled, double-bind study[J]. Journal of Nutrition, 2016, 146: 249-255. DOI:10.3945/jn.115.214098.

[57]

BODE L. Huamn milk oligosaccharides: prebiotics and beyond[J]. Nutrition Reviews, 2009, 67: S183-S191. DOI:10.3945/jn.115.214098.

[58]

SPRONG R C, HULSTEIN M F, VAN DER MEER R. Bactericidal activities of milk lipids[J]. Antimicrob Agents Chemother, 2001, 45: 1298-1301. DOI:10.1128/aac.45.4.1298-1301.2001.

Journal of Dairy Science and Technology
Pages 46-52
Cite this article:
SHI J, ZHANG H, ZHAO F, et al. Advances in Structure, Functional Characteristics and Application of Milk Fat Globule Membrane. Journal of Dairy Science and Technology, 2025, 48(1): 46-52. https://doi.org/10.7506/rykxyjs1671-5187-20240724-066
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return