China is blessed with minor species milk resources. Minor species milks from different sources have their own distinctive characteristics in terms of nutrient composition and content as well as functional activity. Oligosaccharides, as important bioactive ingredients in milk, have many significant biological functions. With the aim of providing theoretical reference for the development and utilization of oligosaccharides in minor species milk, this paper reviews recent progress in the research on the types, structures and contents of oligosaccharides in goat milk, donkey milk, buffalo milk, camel milk and horse milk, and it also summarizes the bioactive functions of milk oligosaccharides such as probiotic, antibacterial and anti-inflammatory properties as well as promoting brain development.
XIAO T, ZENG J P, ZHAO C D, et al. Comparative analysis of protein digestion characteristics in human, cow, goat, sheep, mare, and camel milk under simulated infant condition[J]. Journal of Agricultural and Food Chemistry, 2023, 71(41): 15035-15047. DOI:10.1021/acs.jafc.3c03123.
DINLEYICI M, BARBIEUR J, DINLEYICI E C, et al. Functional effects of human milk oligosaccharides (HMOs)[J]. Gut Microbes, 2023, 15(1): 2186115. DOI:10.1080/19490976.2023.2186115.
ZHU L Y, LI H Y, LUO T L, et al. Human milk oligosaccharides: a critical review on structure, preparation, their potential as a food bioactive component, and future perspectives[J]. Journal of Agricultural and Food Chemistry, 2023, 71(43): 15908-15925. DOI:10.1021/acs.jafc.3c04412.
BODE L. Human milk oligosaccharides: every baby needs a sugar mama[J]. Glycobiology, 2012, 22(9): 1147-1162. DOI:10.1093/glycob/cws074.
MEENA S, MEENA G S, GAUTAM P B, et al. A comprehensive review on donkey milk and its products: composition, functionality and processing aspects[J]. Food Chemistry Advances, 2024, 4: 100647. DOI:10.1016/j.focha.2024.100647.
URAKAMI H, SAEKI M, WATANABE Y, et al. Isolation and assessment of acidic and neutral oligosaccharides from goat milk and bovine colostrum for use as ingredients of infant formulae[J]. International Dairy Journal, 2018, 83: 1-9. DOI:10.1016/j.idairyj.2018.03.004.
GIBSON G R, HUTKINS R, SANDERS M E, et al. The International scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(8): 491-502. DOI:10.1038/s41575-020-0344-2.
CHENG L H, AKKERMAN R, KONKG C L, et al. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(7): 1184-1200. DOI:10.1080/10408398.2020.1754756.
OKBURAN G, KIZILER S. Human milk oligosaccharides as prebiotics[J]. Pediatrics & Neonatology, 2023, 64(3): 231-238. DOI:10.1016/j.pedneo.2022.09.017.
ANDREAS N J, KAMPMANN B, LE-DOARE K M. Human breast milk: a review on its composition and bioactivity[J]. Early Human Development, 2015, 91(11): 629-635. DOI:10.1016/j.earlhumdev.2015.08.013.
ZHANG B, LI L Q, LIU F T, et al. Human milk oligosaccharides and infant gut microbiota: molecular structures, utilization strategies and immune function[J]. Carbohydrate Polymers, 2022, 276: 118738. DOI:10.1016/j.carbpol.2021.118738.
THURL S, MUNZERT M, BOEHM G, et al. Systematic review of the concentrations of oligosaccharides in human milks[J]. Nutrition Reviews, 2017, 75(11): 920-933. DOI:10.1093/nutrit/nux044.
ZHANG L N, LIN Q R, ZHANG Z Y, et al. Qualitative and quantitative changes of oligosaccharides in human and animal milk over lactation[J]. Journal of Agricultural and Food Chemistry, 2023, 71(42): 15553-15568. DOI:10.1021/acs.jafc.3c03181.
ZHANG X L, LIU Y F, LIU L, et al. Microbial production of sialic acid and sialylated human milk oligosaccharides: advances and perspectives[J]. Biotechnology Advances, 2019, 37(5): 787-800. DOI:10.1016/j.biotechadv.2019.04.011.
THUM C, COOKSON A, MCNABB W C, et al. Composition and enrichment of caprine milk oligosaccharides from New Zealand Saanen goat cheese whey[J]. Journal of Food Composition and Analysis, 2015, 42: 30-37. DOI:10.1016/j.jfca.2015.01.022.
SHI Y, HAN B S, ZHANG L N, et al. Comprehensive identification and absolute quantification of milk oligosaccharides in different species[J]. Journal of Agricultural and Food Chemistry, 2021, 69(51): 15585-15597. DOI:10.1021/acs.jafc.1c05872.
WANG Y F, ZHOU X H, GONG P M, et al. Comparative major oligosaccharides and lactose between Chinese human and animal milk[J]. International Dairy Journal, 2020, 108: 104727. DOI:10.1016/j.idairyj.2020.104727.
CHATZIIOANNOU A C, BENJAMINS E, PELLIS L, et al. Extraction and quantitative analysis of goat milk oligosaccharides: composition, variation, associations, and 2’-FL variability[J]. Journal of Agricultural and Food Chemistry, 2021, 69(28): 7851-7862. DOI:10.1021/acs.jafc.1c00499.
YAO Q Q, GAO Y N, WANG F E, et al. Label-free quantitation of milk oligosaccharides from different mammal species and heat treatment influence[J]. Food Chemistry, 2024, 430: 136977. DOI:10.1016/j.foodchem.2023.136977.
LICITRA R, LI J Q, LIANG X M, et al. Profile and content of sialylated oligosaccharides in donkey milk at early lactation[J]. LWT-Food Science and Technology, 2019, 115: 108437. DOI:10.1016/j.lwt.2019.108437.
WANG J X, LEI B B, YAN J Y, et al. Donkey milk oligosaccharides influence the growth-related characteristics of intestinal cells and induce G2/M growth arrest via the p38 pathway in HT-29 cells[J]. Food & Function, 2019, 10(8): 4823-4833. DOI:10.1039/c8fo02584c.
KARAV S, SALCEDO J, FRESE S A, et al. Thoroughbred mare’s milk exhibits a unique and diverse free oligosaccharide profile[J]. FEBS Open Bio, 2018, 8(8): 1219-1229. DOI:10.1002/2211-5463.12460.
DIFILIPPO E, WILLEMS H A M, VENDRIG J C, et al. Comparison of milk oligosaccharides pattern in colostrum of different horse breeds[J]. Journal of Agricultural and Food Chemistry, 2015, 63(19): 4805-4814. DOI:10.1021/acs.jafc.5b01127.
WANG H Y, ZHANG M H, HUO Y C, et al. Comprehensive investigation of milk oligosaccharides in different mammalian species and the effect of breed and lactation period on sheep milk oligosaccharides[J]. Food Research International, 2023, 172: 113132. DOI:10.1016/j.foodres.2023.113132.
ALBRECHT S, LANE J A, MARINO K, et al. A comparative study of free oligosaccharides in the milk of domestic animals[J]. British Journal of Nutrition, 2014, 111(7): 1313-1328. DOI:10.1017/S0007114513003772.
MARTIN-ORTIZ A, SALCEDO J, BARILE D, et al. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry[J]. Journal of Chromatography A, 2016, 1428: 143-153. DOI:10.1016/j.chroma.2015.09.060.
MARTIN-ORTIZ A, BARILE D, SALCEDO J, et al. Changes in caprine milk oligosaccharides at different lactation stages analyzed by high performance liquid chromatography coupled to mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2017, 65(17): 3523-3531. DOI:10.1021/acs.jafc.6b05104.
LU J, ZHANG Y, SONG B, et al. Comparative analysis of oligosaccharides in Guanzhong and Saanen goat milk by using LC-MS/MS[J]. Carbohydrate Polymers, 2020, 235: 115965. DOI:10.1016/j.carbpol.2020.115965.
LI R, ZHOU Y L, XU Y J, et al. Comparative analysis of oligosaccharides in the milk of human and animals by using LC-QE-HF-MS[J]. Food Chemistry: X, 2023, 18: 100705. DOI:10.1016/j.fochx.2023.100705.
SAKSENA R, DEEPAK D, KHARE A, et al. A novel pentasaccharide from immunostimulant oligosaccharide fraction of buffalo milk[J]. Biochimica et Biophysica Acta, 1999, 1428(2/3): 433-445. DOI:10.1016/S0304-4165(99)00089-6.
LEE H, CUTHBERTSON D J, OTTER D E, et al. Rapid screening of bovine milk oligosaccharides in a whey permeate product and domestic animal milks by accurate mass database and tandem mass spectral library[J]. Journal of Agricultural and Food Chemistry, 2016, 64(32): 6364-6374. DOI:10.1021/acs.jafc.6b02039.
MINEGUCHI Y, MIYOSHI M, TAUFIK E, et al. Chemical characterization of the milk oligosaccharides of some Artiodactyla species including giraffe (Giraffa camelopardalis), sitatunga (Tragelaphus spekii), deer (Cervus nippon yesoensis) and water buffalo (Bubalus bubalis)[J]. Glycoconjugate Journal, 2018, 35(6): 561-574. DOI:10.1007/s10719-018-9849-0.
REMOROZA C A, LIANG Y X, MAK T D, et al. Increasing the coverage of a mass spectral library of milk oligosaccharides using a hybrid-search-based bootstrapping method and milks from a wide variety of mammals[J]. Analytical Chemistry, 2020, 92(15): 10316-10326. DOI:10.1021/acs.analchem.0c00342.
MANABAT F, BHATTACHARYA M, COMPLETO G C, et al. Profiling milk oligosaccharides in Philippine buffalo breeds across lactation and identification of novel high-molecular weight fucosylated and sialylated oligosaccharides[J]. International Dairy Journal, 2023, 146: 105731. DOI:10.1016/j.idairyj.2023.105731.
ALTOMONTE I, SALARI F, LICITRA R, et al. Donkey and human milk: insights into their compositional similarities[J]. International Dairy Journal, 2019, 89: 111-118. DOI:10.1016/j.idairyj.2018.09.005.
MONTI L, CATTANEO T M P, ORLANDI M, et al. Capillary electrophoresis of sialylated oligosaccharides in milk from different species[J]. Journal of Chromatography A, 2015, 1409: 288-291. DOI:10.1016/j.chroma.2015.07.076.
RANJAN A, RATHORE R, DEEPAK D, et al. Immunostimulant fractions of novel hexa and heptasaccharide from donkey’s milk[J]. Asian Journal of Organic & Medicinal Chemistry, 2016, 1(2): 55-60. DOI:10.14233/ajomc.2016.AJOMC-P17.
YAN J Y, DING J J, JING W, et al. Profiling of sialylatedoligosaccharides in mammalian milk using online solid phase extraction-hydrophilic interaction chromatography coupled with negative-ion electrospray mass spectrometry[J]. Analytical Chemistry, 2018, 90(5): 3174-3182. DOI:10.1021/acs.analchem.7b04468.
ORLANDI M, CURADI M C, MONTI L, et al. Sialylated oligosaccharides in mare and ass milk: preliminary results[J]. Progress in Nutrition, 2016, 18(3): 283-287.
FUKUDA K, YAMAMOTO A, GANZORIG K, et al. Chemical characterization of the oligosaccharides in bactrian camel (Camelus bactrianus) milk and colostrum[J]. Journal of Dairy Science, 2010, 93(12): 5572-5587. DOI:10.3168/jds.2010-3151.
ALHAJ O A, TAUFIK E, HANDA Y, et al. Chemical characterisation of oligosaccharides in commercially pasteurised dromedary camel (Camelus dromedarius) milk[J]. International Dairy Journal, 2013, 28(2): 70-75. DOI:10.1016/j.idairyj.2012.08.008.
SOUSA Y R F, MEDEIROS L B, PINTADO M M E, et al. Goat milk oligosaccharides: composition, analytical methods and bioactive and nutritional properties[J]. Trends in Food Science & Technology, 2019, 92: 152-161. DOI:10.1016/j.tifs.2019.07.052.
ALDREDGE D L, GERONIMO M R, HUA S, et al. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures[J]. Glycobiology, 2013, 23: 664-676. DOI:10.1093/glycob/cwt007.
SALCEDO J, FRESE S A, MILLS D A, et al. Characterization of porcine milk oligosaccharides during early lactation and their relation to the fecal microbiome[J]. Journal of Dairy Science, 2016, 99: 7733-7743. DOI:10.3168/jds.2016-10966.
VAN LEEUWEN S S, TE POELE E M, CHATZIIOANNOU A C, et al. Goat milk oligosaccharides: their diversity, quantity, and functional properties in comparison to human milk oligosaccharides[J]. Journal of Agricultural and Food Chemistry, 2020, 68(47): 13469-13485. DOI:10.1021/acs.jafc.0c03766.
CLAPS S, NAPOLI M A D, SEPE L, et al. Sialyloligosaccharides content in colostrum and milk of two goat breeds[J]. Small Ruminant Research, 2014, 121(1): 116-119. DOI:10.1016/j.smallrumres.2013.12.024.
TONON K M, MIRANDA A, ABRÃO A C F V, et al. Validation and application of a method for the simultaneous absolute quantification of 16 neutral and acidic human milk oligosaccharides by graphitized carbon liquid chromatography-electrospray ionization-mass spectrometry[J]. Food Chemistry, 2019, 274: 691-697. DOI:10.1016/j.foodchem.2018.09.036.
BAO Y W, CHEN C, NEWBURG D S. Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry[J]. Analytical Biochemistry, 2013, 433(1): 28-35. DOI:10.1016/j.ab.2012.10.003.
FONG B, MA K, MCJARROW P. Quantification of bovine milk oligosaccharides using liquid chromatography-selected reaction monitoring-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 9788-9795. DOI:10.1021/jf202035m.
MANTOVANI V, GALEOTTI F, MACCARI F, et al. Recent advances on separation and characterization of human milk oligosaccharides[J]. Electrophoresis, 2016, 37(11): 1514-1524. DOI:10.1002/elps.201500477.
SANTOS W M, GOMES A C G, NOBRE M S C, et al. Goat milk as a natural source of bioactive compounds and strategies to enhance the amount of these beneficial components[J]. International Dairy Journal, 2023, 137: 105515. DOI:10.1016/j.idairyj.2022.105515.
CRAIG A D, BEDFORD M R, HASTIE P, et al. The effect of carbohydrases or prebiotic oligosaccharides on growth performance, nutrient utilisation and development of small intestine and immune organs in broilers fed nutrient-adequate diets based on either wheat or barley[J]. Journal of The Science of Food and Agriculture, 2019, 99(7): 3246-3254. DOI:10.1002/jsfa.9537.
DE MAESSCHALCK C, EECKHAUT V, MAERTENS L, et al. Effects of xylo-oligosaccharides on performance and microbiota in broiler chickens[J]. Applied and Environmental Microbiology, 2015, 81(17): 5880-5888. DOI:10.1128/AEM.01616-15.
CUKROWSKA B, BIERLA J B, ZAKRZEWSKA M, et al. The relationship between the infant gut microbiota and allergy. The role of Bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life[J]. Nutrients, 2020, 12(4): 946. DOI:10.3390/nu12040946.
YU Z T, CHEN C, KLING D E, et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota[J]. Glycobiology, 2013, 23(2): 169-177. DOI:10.1093/glycob/cws138.
HAN Y, MA H R, LIU Y L, et al. Effects of goat milk enriched with oligosaccharides on microbiota structures, and correlation between microbiota and short-chain fatty acids in the large intestine of the mouse[J]. Journal of Dairy Science, 2021, 104(3): 2773-2786. DOI:10.3168/jds.2020-19510.
VANDER TOORN M V, CHATZIIOANNOU A C, PELLIS, et al. Biological relevance of goat milk oligosaccharides to infant health[J]. Journal of Agricultural and Food Chemistry, 2023, 71(38): 13935-13949. DOI:10.1021/acs.jafc.3c02194.
OLIVEIRA D L, COSTABILE A, WILBEY R A, et al. In vitro evaluation of the fermentation properties and potential prebiotic activity of caprine cheese whey oligosaccharides in batch culture systems[J]. Biofactors, 2013, 38(6): 440-449. DOI:10.1002/biof.1043.
ZHANG N, JIN M L, WANG K M, et al. Functional oligosaccharide fermentation in the gut: improving intestinal health and its determinant factors: a review[J]. Carbohydrate Polymers, 2022, 284: 119043. DOI:10.1016/j.carbpol.2021.119043.
JACOBS J P, LEE M L, RECHTMAN D J, et al. Human milk oligosaccharides modulate the intestinal microbiome of healthy adults[J]. Scientific Reports, 2023, 13(1): 14308. DOI:10.1038/s41598-023-41040-5.
MOROZOV V, HANSMAN G, HANISCH F G, et al. Human milk oligosaccharides as promising antivirals[J]. Molecular Nutrition & Food Research, 2018, 62(6): e1700679. DOI:10.1002/mnfr.201700679.
RUIZ-PALACIOS G M, CERVANTES L E, RAMOS P, et al. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection[J]. Journal of Biological Chemistry, 2003, 278(16): 14112-14120. DOI:10.1074/jbc.M207744200.
GONIA S, TUEPKER M, HEISEL T, et al. Human milk oligosaccharides inhibit Candida albicans invasion of human premature intestinal epithelial cells[J]. The Journal of Nutrition, 2015, 145(9): 1992-1998. DOI:10.3945/jn.115.214940.
LEONG A, LIU Z, ALMSHAWIT H, et al. Oligosaccharides in goats’ milk-based infant formula and theirprebiotic and anti-infection properties[J]. British Journal of Nutrition, 2019, 122(4): 441-449. DOI:10.10171S000711451900134.
QUINN E M, SLATTERY H, WALSH D, et al. Bifidobacterium longum subsp. infantis ATCC 15697 and goat milk oligosaccharides show synergism in vitro as anti-infectives against Campylobacter jejuni[J]. Foods, 2020, 9(3): 348. DOI:10.3390/foods9030348.
YUE H Y, HAN Y Y, YIN B R, et al. Comparison of the antipathogenic effect toward Staphylococcus aureus of N-linked and free oligosaccharides derived from human, bovine, and goat milk[J]. Journal of Food Science, 2020, 85(8): 2329-2339. DOI:10.1111/1750-3841.15150.
HALL N J. Necrotising enterocolitis: better data, still many questions[J]. The Lancet Gastroenterology & Hepatology, 2017, 2(1): 6-7. DOI:10.1016/S2468-1253(16)30158-3.
WU J R, DING R X, QI S Y, et al. In vivo immunomodulatory alleviating effects of animal milk oligosaccharides on murine NEC: a study[J]. Food Bioscience, 2023, 53: 102643. DOI:10.1016/j.fbio.2023.102643.
CHEN X X, HU J R, YANG J, et al. Human milk oligosaccharide 2’-fucosyllactose alleviates DSS-induced ulcerative colitis via improving intestinal barrier function and regulating gut microbiota[J]. Food Bioscience, 2024, 59: 104162. DOI:10.1016/j.fbio.2024.104162.
HE Y Y, LI S B, KLING D E, et al. The human milk oligosaccharide 2’-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation[J]. Gut, 2016, 65(1): 33-46. DOI:10.1136/gutjnl-2014-307544.
CHLEILAT F, KLANCICl T, MA K, et al. Human milk oligosaccharide supplementation affects intestinal barrier function and microbial composition in the gastrointestinal tract of young Sprague Dawley rats[J]. Nutrients, 2020, 12(5): 1532. DOI:10.3390/nu12051532.
LI B, WU R Y, HORNE R G, et al. Human milk oligosaccharides protect against necrotizing enterocolitis by activating intestinal cell differentiation[J]. Molecular Nutrition & Food Research, 2020, 64(21): 2000519. DOI:10.1002/mnfr.202000519.
LARA-VILLOSLADA F, DEBRAS E, NIETO A, et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis[J]. Clinical Nutrition, 2006, 25(3): 477-488. DOI:10.1016/j.clnu.2005.11.004.
NEWBURG D S, KO J S, LEONE S, et al. Human milk oligosaccharides and synthetic galactosyl oligosaccharides contain 3’-, 4-, and 6’-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo[J]. Journal of Nutrition, 2016, 146(2): 358-367. DOI:10.3945/jn.115.220749.
HUANG Z Y, LI Y R, LUO Y J, et al. Human milk oligosaccharides 3’-sialyllactose and 6’-sialyllactose protectintestine against necrotizing enterocolitis damage induced by hypoxia[J]. Journal of Functional Foods, 2021, 86: 104708. DOI:10.1016/j.jff.2021.104708.
EIWEGGER T, STAHL B, HAIDL P, et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties[J]. Pediatric Allergy and Immunology, 2010, 21(8): 1179-1188. DOI:10.1111/j.1399-3038.2010.01062.x.
EIWEGGER T, STAHL B, SCHMITT J, et al. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro[J]. Pediatric Research, 2004, 56(4): 536-540. DOI:10.1203/01.PDR.0000139411.35619.B4.
GOOD M, SOGHI C P, YAMAGUCHI Y, et al. The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine[J]. British Journal of Nutrition, 2016, 116(7): 1175-1187. DOI:10.1017/S0007114516002944.
YOO S W, MOTARI M G, SUSUKI K, et al. Sialylation regulates brain structure and function[J]. Federation of American Societies for Experimental Biology Journal, 2015, 29(7): 3040-3053. DOI:10.1096/fj.15-270983.
XIAO L, LAND B V, ENGEN P, et al. Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD mice[J]. Scientific Reports, 2018, 8(1): 123-141. DOI:10.1038/s41598-018-22052-y.
ZHANG X Y, YANG H B, ZHENG J P, et al. Chitosan oligosaccharides attenuate loperamide-induced constipation through regulation of gut microbiota in mice[J]. Carbohydrate Polymers, 2021, 253: 117218. DOI:10.1016/j.carbpol.2020.117218.
MUDD A T, SALCEDO J, ALEXANDER L S, et al. Porcine milk oligosaccharides and sialic acid concentrations vary throughout lactation[J]. Frontiers in Nutrition, 2016, 3: 39. DOI:10.3389/fnut.2016.00039.
LI M, BAI Y Q, ZHOU J R, et al. Core fucosylation of maternal milk N-glycan evokes B cell activation by selectively promoting the L-fucose metabolism of gut Bifidobacterium spp. and Lactobacillus spp.[J]. mBio, 2019, 10(2): e00128-19. DOI:10.1128/mBio.00128-19.
WANG Y L, KHAN A, ANTONOPOULOS A, et al. Loss of α2-6 sialylation promotes the transformation of synovial fibroblasts into a pro-inflammatory phenotype in arthritis[J]. Nature Communications, 2021, 12(1): 2343. DOI:10.1038/s41467-021-22365-z.
SRIVASTAVA A, TRIPATHI R, SONI V K, et al. Isolation of mare’s milk oligosaccharide fraction of colostrum, transitional, and nature phases promotes in vitro oxidative burst in murine macrophages[J]. Journal of Equine Veterinary Science, 2014, 34(8): 1009-1015. DOI:10.1016/j.jevs.2014.06.001.