Traffic sign detection is one of the key com-ponents in autonomous driving. Advanced autonomous vehicles armed with high quality sensors capture high definition images for further analysis. Detecting traffic signs, moving vehicles, and lanes is important for localization and decision making. Traffic signs, especially those that are far from the camera, are small, and so are challenging to traditional object detection methods. In this work, in order to reduce computational cost and improve detection performance, we split the large input images into small blocks and then recognize traffic signs in the blocks using another detection module. Therefore, this paper proposes a three-stage traffic sign detector, which connects a BlockNet with an RPN-RCNN detection network. BlockNet, which is composed of a set of CNN layers, is capable of performing block-level foreground detection, making inferences in less than 1 ms. Then, the RPN-RCNN two-stage detector is used to identify traffic sign objects in each block; it is trained on a derived dataset named TT100KPatch. Experiments show that our framework can achieve both state-of-the-art accuracy and recall; its fastest detection speed is 102 fps.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Research Article
Issue
Computational Visual Media 2019, 5(4): 403-416
Published: 04 September 2019
Downloads:26
Total 1