Abstract Detecting small objects is a challenging task. We focus on a special case: the detection and classification of traffic signals in street views. We present a novel framework that utilizes a visual attention model to make detection more efficient, without loss of accuracy, and which generalizes. The attention model is designed to generate a small set of candidate regions at a suitable scale so that small targets can be better located and classified. In order to evaluate our method in the context of traffic signal detection, we have built a traffic light benchmark with over 15,000 traffic light instances, based on Tencent street view panoramas. We have tested our method both on the dataset we have built and the Tsinghua–Tencent 100K (TT100K) traffic sign benchmark. Experiments show that our method has superior detection performance and is quicker than the general faster RCNN object detection framework on both datasets. It is competitive with state-of-the-art specialist traffic sign detectors on TT100K, but is an order of magnitude faster. To show generality, we tested it on the LISA dataset without tuning, and obtained an average precision in excess of 90%.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Research Article
Issue
Computational Visual Media 2018, 4(3): 253-266
Published: 04 August 2018
Downloads:54
Open Access
Research Article
Issue
Computational Visual Media 2016, 2(2): 107-117
Published: 07 April 2016
Downloads:54
Quadrics are a compact mathematical formulation for a range of primitive surfaces. A problem arises when there are not enough data points to compute the model but knowledge of the shape is available. This paper presents a method for fitting a quadric with a Bayesian prior. We use a matrix normal prior in order to favour ellipsoids when fitting to ambiguous data. The results show the algorithm copes well when there are few points in the point cloud, competing with contemporary techniques in the area.
Total 2