Traffic prediction plays an integral role in telecommunication network planning and network optimization. In this paper, we investigate the traffic forecasting for data services in 3G mobile networks. Although the Box-Jenkins model has been proven to be appropriate for voice traffic (since the arrival of calls follows a Poisson distribution), it has been demonstrated that the Internet traffic exhibits statistical self-similarity and has to be modeled using the Fractional AutoRegressive Integrated Moving Average (FARIMA) process. However, a few studies have concluded that the FARIMA process may fail in modeling the Internet traffic. To this end, we conducted experiments on the modeling of benchmark Internet traffic and found that the FARIMA process fails because of the significant multifractal characteristic inherent in the traffic series. Thereafter, we investigate the traffic series of data services in a 3G mobile network from a province in China. Rich multifractal spectra are found in this series. Based on this observation, an integrated method combining the AutoRegressive Moving Average (ARMA) and FARIMA processes is applied. The obtained experimental results verify the effectiveness of the integrated prediction method.
Publications
- Article type
- Year
- Co-author
Year
Open Access
Issue
Tsinghua Science and Technology 2013, 18(4): 398-405
Published: 05 August 2013
Downloads:22
Total 1