Lead-free piezoceramics based on the (Ba,Ca)(Zr,Ti)O3 (BCZT) system exhibit excellent electromechanical properties for low-temperature actuation applications, but suffer from relatively high processing temperatures. Here we demonstrate an approach for the reduction of the sintering temperature and simultaneous increase of the electromechanical strain response of (Ba,Ca)(Zr,Ti)O3 piezoceramics by aliovalent doping with Ce. The samples were prepared by solid state synthesis and their crystallographic structure, dielectric, ferroelectric, and electromechanical properties were investigated. The highest d*33 value of 1189 pm/V was obtained for the sample with 0.05 mol% Ce, substituted on the A-site of the perovskite lattice. The results indicate a large potential of these materials for off-resonance piezoelectric actuators.
Publications
- Article type
- Year
Article type
Year
Erratum
Issue
Journal of Advanced Ceramics 2019, 8(4): 587
Published: 12 September 2019
Downloads:22
Open Access
Research Article
Issue
Journal of Advanced Ceramics 2019, 8(2): 186-195
Published: 13 June 2019
Downloads:44
Total 2