Sulfosalicylic acid (SSA) was used as an intercalation agent and an excellent antenna to synthesize layered rare-earth hydroxide (LRH) materials and directly obtain SSA-modified terbium-doped ytterbium hydroxide nanosheets by mechanical exfoliation. The crystal structure and morphologies of the LRHs and nanosheets were determined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The particle size and zeta potential of the prepared nanosheets were also analyzed. The as-prepared nanosheets exhibited excellent luminescent properties. The positively charged nanosheets were electrophoretically deposited on a conductive glass to form a thin film. The luminescence of this thin film can be quenched by chromate (CrO42–) and bilirubin (BR), which shows good sensing properties. The quenching mechanism of the sensing film by CrO42– and BR was discussed based on the spectra and structure of the film.
- Article type
- Year
To quantify the oxygen content in molten salts, we examined the performance of an yttria-stabilized zirconia solid electrolyte oxygen sensor with a Bi/Bi2O3 reference electrode, focusing on its output accuracy. When the above sensor was tested in a flow of gas with known oxygen partial pressure, pO2, a linear relationship between lgpO2 and the electromotive force (EMF) was observed, and the correlation slope exhibited a positive deviation from Nernstian behavior. EMF measurements performed in molten NaCl–KCl indicated that the oxygen content of this salt mixture increased with increasing oxygen partial pressure in the covering gas, in agreement with Henry’s law. Moreover, the EMF exhibited a linear decrease with increasing melt temperature of molten NaCl–KCl, in agreement with the theoretical model. Finally, a relationship between the structure of molten NaCl–KCl and its oxygen diffusion behavior was established. As a result, the developed sensor was demonstrated to be well suited for determining the oxygen content of molten salts.
An overview is given of recent development of mechanochemical processes for the preparation of advanced ceramics. Some fundamental mechanical effects are firstly compared and discussed. Several important application fields are listed as follow, stemming from oxide materials, non-oxide materials, and composite materials to nano-structured materials.