Sort:
Regular Paper Issue
PetroKG: Construction and Application of Knowledge Graph in Upstream Area of PetroChina
Journal of Computer Science and Technology 2020, 35(2): 368-378
Published: 27 March 2020
Abstract Collect

There is a large amount of heterogeneous data distributed in various sources in the upstream of PetroChina. These data can be valuable assets if we can fully use them. Meanwhile, the knowledge graph, as a new emerging technique, provides a way to integrate multi-source heterogeneous data. In this paper, we present one application of the knowledge graph in the upstream of PetroChina. Specifically, we first construct a knowledge graph from both structured and unstructured data with multiple NLP (natural language progressing) methods. Then, we introduce two typical knowledge graph powered applications and show the benefit that the knowledge graph brings to these applications: compared with the traditional machine learning approach, the well log interpretation method powered by knowledge graph shows more than 7.69% improvement of accuracy.

Open Access Issue
Valuable Data Extraction for Resistivity Imaging Logging Interpretation
Tsinghua Science and Technology 2020, 25(2): 281-293
Published: 02 September 2019
Abstract PDF (3.9 MB) Collect
Downloads:79

Imaging logging has become a popular means of well logging because it can visually represent the lithologic and structural characteristics of strata. The manual interpretation of imaging logging is affected by the limitations of the naked eye and experiential factors. As a result, manual interpretation accuracy is low. Therefore, it is highly useful to develop effective automatic imaging logging interpretation by machine learning. Resistivity imaging logging is the most widely used technology for imaging logging. In this paper, we propose an automatic extraction procedure for the geological features in resistivity imaging logging images. This procedure is based on machine learning and achieves good results in practical applications. Acknowledging that the existence of valueless data significantly affects the recognition effect, we propose three strategies for the identification of valueless data based on binary classification. We compare the effect of the three strategies both on an experimental dataset and in a production environment, and find that the merging method is the best performing of the three strategies. It effectively identifies the valueless data in the well logging images, thus significantly improving the automatic recognition effect of geological features in resistivity logging images.

Total 2