Discovering regularities between entities in temporal graphs is vital for many real-world applications (e.g., social recommendation, emergency event detection, and cyberattack event detection). This paper proposes temporal graph association rules (TGARs) that extend traditional graph-pattern association rules in a static graph by incorporating the unique temporal information and constraints. We introduce quality measures (e.g., support, confidence, and diversification) to characterize meaningful TGARs that are useful and diversified. In addition, the proposed support metric is an upper bound for alternative metrics, allowing us to guarantee a superset of patterns. We extend conventional confidence measures in terms of maximal occurrences of TGARs. The diversification score strikes a balance between interestingness and diversity. Although the problem is NP-hard, we develop an effective discovery algorithm for TGARs that integrates TGARs generation and TGARs selection and shows that mining TGARs is feasible over a temporal graph. We propose pruning strategies to filter TGARs that have low support or cannot make top-
- Article type
- Year
- Co-author
The problem of recommending new items to users (often referred to as item cold-start recommendation) remains a challenge due to the absence of users’ past preferences for these items. Item features from side information are typically leveraged to tackle the problem. Existing methods formulate regression methods, taking item features as input and user ratings as output. These methods are confronted with the issue of overfitting when item features are high-dimensional, which greatly impedes the recommendation experience. Availing of high-dimensional item features, in this work, we opt for feature selection to solve the problem of recommending top-N new items. Existing feature selection methods find a common set of features for all users, which fails to differentiate users’ preferences over item features. To personalize feature selection, we propose to select item features discriminately for different users. We study the personalization of feature selection at the level of the user or user group. We fulfill the task by proposing two embedded feature selection models. The process of personalized feature selection filters out the dimensions that are irrelevant to recommendations or unappealing to users. Experimental results on real-life datasets with high-dimensional side information reveal that the proposed method is effective in singling out features that are crucial to top-N recommendation and hence improving performance.
As a supplement to traditional education, online courses offer people, regardless of their age, gender, or profession, the chance to access state-of-the-art knowledge. Nonetheless, despite the large number of students who choose to begin online courses, it is easy to observe that quite a few of them drop out in the middle, and information on this is vital for course organizers to improve their curriculum outlines. In this work, in order to make a precise prediction of the drop-out rate, we propose a combined method MOOP, which consists of a global tensor and local tensor to express all available feature aspects. Specifically, the global tensor structure is proposed to model the data of the online courses, while a local tensor is clustered to capture the inner connection of courses. Consequently, drop-out prediction is achieved by adopting a high-accuracy low-rank tensor completion method, equipped with a pigeon-inspired algorithm to optimize the parameters. The proposed method is empirically evaluated on real-world Massive Open Online Courses (MOOC) data, and is demonstrated to offer remarkable superiority over alternatives in terms of efficiency and accuracy.