Sort:
Open Access Issue
A Chan-Vese Model Based on the Markov Chain for Unsupervised Medical Image Segmentation
Tsinghua Science and Technology 2021, 26(6): 833-844
Published: 09 June 2021
Abstract PDF (736.1 KB) Collect
Downloads:74

The accurate segmentation of medical images is crucial to medical care and research; however, many efficient supervised image segmentation methods require sufficient pixel level labels. Such requirement is difficult to meet in practice and even impossible in some cases, e.g., rare Pathoma images. Inspired by traditional unsupervised methods, we propose a novel Chan-Vese model based on the Markov chain for unsupervised medical image segmentation. It combines local information brought by superpixels with the global difference between the target tissue and the background. Based on the Chan-Vese model, we utilize weight maps generated by the Markov chain to model and solve the segmentation problem iteratively using the min-cut algorithm at the superpixel level. Our method exploits abundant boundary and local region information in segmentation and thus can handle images with intensity inhomogeneity and object sparsity. In our method, users gain the power of fine-tuning parameters to achieve satisfactory results for each segmentation. By contrast, the result from deep learning based methods is rigid. The performance of our method is assessed by using four Computerized Tomography (CT) datasets. Experimental results show that the proposed method outperforms traditional unsupervised segmentation techniques.

Open Access Issue
Multiple Deep-Belief-Network-Based Spectral-Spatial Classification of Hyperspectral Images
Tsinghua Science and Technology 2019, 24(2): 183-194
Published: 31 December 2018
Abstract PDF (13.1 MB) Collect
Downloads:31

A deep-learning-based feature extraction has recently been proposed for HyperSpectral Images (HSI) classification. A Deep Belief Network (DBN), as part of deep learning, has been used in HSI classification for deep and abstract feature extraction. However, DBN has to simultaneously deal with hundreds of features from the HSI hyper-cube, which results into complexity and leads to limited feature abstraction and performance in the presence of limited training data. Moreover, a dimensional-reduction-based solution to this issue results in the loss of valuable spectral information, thereby affecting classification performance. To address the issue, this paper presents a Spectral-Adaptive Segmented DBN (SAS-DBN) for spectral-spatial HSI classification that exploits the deep abstract features by segmenting the original spectral bands into small sets/groups of related spectral bands and processing each group separately by using local DBNs. Furthermore, spatial features are also incorporated by first applying hyper-segmentation on the HSI. These results improved data abstraction with reduced complexity and enhanced the performance of HSI classification. Local application of DBN-based feature extraction to each group of bands reduces the computational complexity and results in better feature extraction improving classification accuracy. In general, exploiting spectral features effectively through a segmented-DBN process and spatial features through hyper-segmentation and integration of spectral and spatial features for HSI classification has a major effect on the performance of HSI classification. Experimental evaluation of the proposed technique on well-known HSI standard data sets with different contexts and resolutions establishes the efficacy of the proposed techniques, wherein the results are comparable to several recently proposed HSI classification techniques.

Total 2