Publications
Sort:
Open Access Research Article Issue
Tribological properties of oil-impregnated polyimide in double-contact friction under micro-oil lubrication conditions
Friction 2023, 11(8): 1493-1504
Published: 16 January 2023
Abstract PDF (3.8 MB) Collect
Downloads:18

Oil-impregnated porous polyimide (iPPI) materials are usually used as retainer for bearings. In these bearings, balls and rings, balls and retainers are two different kinds of contact. In this paper, the friction and wear properties of iPPI were investigated using steel (disc)–steel (ball)–iPPI (pin) double-contact friction test rig for simulating the actual contact in bearings. The results show that compared with that of iPPI–steel single contact, the friction coefficient of iPPI–steel in double contacts is lower and decreases with the amount of additional oil. The surface of iPPI in single contact suffers more wear compared with that in double contacts. Different from single contact, the worn surfaces of iPPI in double contacts are blackened. The Raman spectra of worn surfaces of balls and discs indicate that α-Fe2O3 and Fe3O4 were formed during rubbing of the double contacts. Many nanoscale iron oxide particles are found on the worn surfaces of iPPI in double contacts; on the contrary, few particles could be found on the surface in single contact. In double-contact friction, the nanoscale wear debris penetrates inside the iPPI material through the process of extruding and recycling of oil, which is the mechanism of the blackening of the iPPI worn surfaces. The studies show that the double-contact friction method is a new and effective method to study the friction in bearings, especially for those with polymer retainer.

Open Access Research Article Issue
Tribological properties of textured stator and PTFE-based material in travelling wave ultrasonic motors
Friction 2020, 8(2): 301-310
Published: 18 January 2019
Abstract PDF (1.4 MB) Collect
Downloads:27

This study fabricated textures on the stator surface of a traveling wave ultrasonic motor (USM) using laser and investigated the tribological behavior of a polytetrafluoroethylene (PTFE) composite friction material and stator. Initially, the effect of textures with different densities was tested. As the results suggested, the generation of large transfer films of PTFE composite was prevented by laser surface texturing, and adhesive wear reduced notably despite the insignificant decrease in load capacity and efficiency. Next, the 100-h test was performed to further study the effects of texture. Worn surface and wear debris were observed to discuss wear mechanisms. After 100 h, the form of wear debris changed into particles. The wear mechanisms of friction material sliding against the textured stator were small size fatigue and slight abrasive wear. The wear height of friction material decreased from 3.8 μm to 1.1 μm. This research provides a method to reduce the wear of friction materials used in travelling wave USMs.

Total 2