During the past decades, the term “social computing” has become a promising interdisciplinary area in the intersection of computer science and social science. In this work, we conduct a data-driven study to understand the development of social computing using the data collected from Digital Bibliography and Library Project (DBLP), a representative computer science bibliography website. We have observed a series of trends in the development of social computing, including the evolution of the number of publications, popular keywords, top venues, international collaborations, and research topics. Our findings will be helpful for researchers and practitioners working in relevant fields.
- Article type
- Year
- Co-author
Online lodging platforms have become more and more popular around the world. To make a booking in these platforms, a user usually needs to select a city first, then browses among all the prospective options. To improve the user experience, understanding the zone preferences of a user’s booking behavior will be helpful. In this work, we aim to predict the zone preferences of users when booking accommodations for the next travel. We have two main challenges: (1) The previous works about next information of Points Of Interest (POIs) recommendation are mainly focused on users’ historical records in the same city, while in practice, the historical records of a user in the same city would be very sparse. (2) Since each city has its own specific geographical entities, it is hard to extract the structured geographical features of accommodation in different cities. Towards the difficulties, we propose DeepPredict, a zone preference prediction system. To tackle the first challenge, DeepPredict involves users’ historical records in all the cities and uses a deep learning based method to process them. For the second challenge, DeepPredict uses HERE places API to get the information of POIs nearby, and processes the information with a unified way to get it. Also, the description of each accommodation might include some useful information, thus we use Sent2Vec, a sentence embedding algorithm, to get the embedding of accommodation description. Using a real-world dataset collected from Airbnb, DeepPredict can predict the zone preferences of users’ next bookings with a remarkable performance. DeepPredict outperforms the state-of-the-art algorithms by 60% in macro F1-score.
Given that the USA and Germany are the most populous countries in North America and Western Europe, understanding the behavioral differences between American and German users of online social networks is essential. In this work, we conduct a data-driven study based on the Yelp Open Dataset. We demonstrate the behavioral characteristics of both American and German users from different aspects, i.e., social connectivity, review styles, and spatiotemporal patterns. In addition, we construct a classification model to accurately recognize American and German users according to the behavioral data. Our model achieves high classification performance with an F1-score of 0.891 and AUC of 0.949.