Chemical vapor deposition (CVD) is the most efficient method to grow large-area two dimensional (2D) transition metal dichiacogenides (TMDCs) in high quality. Monolayer molybdenum disulfide (MoS2) and seed-assistant are the mostly selected 2D TMDC and growth strategy for such CVD processes, respectively. Though the advantages of seed catalysts in facilitating the nucleation, achieving higher yield and better repeatability, as well as their effects on the morphologies of as-grown MoS2 have been studied, the influence of seeding promoters on both optical and electrical properties of as-grown monolayer MoS2 is not known comprehensively, which is indeed critical for understanding fundamental physics and developing practical application of such emerging 2D semiconductors. In this report, we systematically investigated the effect of different seeding promoters on the properties of CVD-grown monolayer MoS2. It is found that different seed molecules lead to different impacts on the optical and electrical properties of as-grown monolayer MoS2. Among three different seed catalysts (perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS), copper phthalocyanine (CuPc), and crystal violet (CV)), PTAS performs better in obtaining large area monolayer MoS2 with good optical quality and high electrical mobility than the other two. Our work gives a guide for modifying the properties of as-grown monolayer MoS2 and other 2D transition metal dichalcogenides in seeding promoters-assisted synthesis process.
- Article type
- Year
- Co-author
Two-dimensional (2D) semiconductors, represented by 2D transition metal dichalcogenides (TMDs), exhibit rich valley physics due to strong spin-orbit/spin-valley coupling. The most common way to probe such 2D systems is to utilize optical methods, which can monitor light emissions from various excitonic states and further help in understanding the physics behind such phenomena. Therefore, 2D TMDs with good optical quality are in great demand. Here, we report a method to directly grow epitaxial WS2 and MoS2 monolayers on hexagonal boron nitride (hBN) flakes with a high yield and high optical quality; these monolayers show better intrinsic light emission features than exfoliated monolayers from natural crystals. For the first time, the valley Zeeman splitting of WS2 and MoS2 monolayers on hBN has been visualized and systematically investigated. This study paves a new way to produce high optical quality WS2 and MoS2 monolayers and to exploit their intrinsic properties in a multitude of applications.