Sort:
Regular Paper Issue
Who Should Be Invited to My Party: A Size-Constrained k-Core Problem in Social Networks
Journal of Computer Science and Technology 2019, 34 (1): 170-184
Published: 18 January 2019
Abstract Collect

In this paper, we investigate the problem of a size-constrained k-core group query (SCCGQ) in social networks, taking both user closeness and network topology into consideration. More specifically, SCCGQ intends to find a group of h users that has the highest social closeness while being a k-core. SCCGQ can be widely applied to event planning, task assignment, social analysis, and many other fields. In contrast to existing work on the k-core detection problem, which aims to find a k-core in a social network, SCCGQ not only focuses on k-core detection but also takes size constraints into consideration. Although the conventional k-core detection problem can be solved in linear time, SCCGQ has a higher complexity. To solve the problem of SCCGQ, we propose a Blast Scatter (BS) algorithm, which appoints the query node as the center to begin outward expansions via breadth search. In each outward expansion, BS finds a new center through a greedy strategy and then selects multiple neighbors of the center. To speed up the BS algorithm, we propose an advanced search algorithm, called Bounded Extension (BE). Specifically, BE combines an effective social distance pruning strategy and a tight upper bound of social closeness to prune the search space considerably. In addition, we propose an offline social-aware index to accelerate the query processing. Finally, our experimental results demonstrate the efficiency and effectiveness of our proposed algorithms on large real-world social networks.

Open Access Issue
A Bayesian Recommender Model for User Rating and Review Profiling
Tsinghua Science and Technology 2015, 20 (6): 634-643
Published: 17 December 2015
Abstract PDF (1.1 MB) Collect
Downloads:31

Intuitively, not only do ratings include abundant information for learning user preferences, but also reviews ccompanied by ratings. However, most existing recommender systems take rating scores for granted and discard the wealth of information in accompanying reviews. In this paper, in order to exploit user profiles' information embedded in both ratings and reviews exhaustively, we propose a Bayesian model that links a traditional Collaborative Filtering (CF) technique with a topic model seamlessly. By employing a topic model with the review text and aligning user review topics with "user attitudes” (i.e., abstract rating patterns) over the same distribution, our method achieves greater accuracy than the traditional approach on the rating prediction task. Moreover, with review text information involved, latent user rating attitudes are interpretable and "cold-start” problem can be alleviated. This property qualifies our method for serving as a "recommender” task with very sparse datasets. Furthermore, unlike most related works, we treat each review as a document, not all reviews of each user or item together as one document, to fully exploit the reviews' information. Experimental results on 25 real-world datasets demonstrate the superiority of our model over state-of-the-art methods.

Total 2