The Extreme Learning Machine (ELM) and its variants are effective in many machine learning applications such as Imbalanced Learning (IL) or Big Data (BD) learning. However, they are unable to solve both imbalanced and large-volume data learning problems. This study addresses the IL problem in BD applications. The Distributed and Weighted ELM (DW-ELM) algorithm is proposed, which is based on the MapReduce framework. To confirm the feasibility of parallel computation, first, the fact that matrix multiplication operators are decomposable is illustrated. Then, to further improve the computational efficiency, an Improved DW-ELM algorithm (IDW-ELM) is developed using only one MapReduce job. The successful operations of the proposed DW-ELM and IDW-ELM algorithms are finally validated through experiments.
Publications
- Article type
- Year
- Co-author
Year
Open Access
Issue
Tsinghua Science and Technology 2017, 22(2): 160-173
Published: 06 April 2017
Downloads:51
Total 1