Classifying wine according to their grade, price, and region of origin is a multi-label and multi-target problem in wineinformatics. Using wine reviews as the attributes, we compare several different multi-label/multi-target methods to the single-label method where each label is treated independently. We explore both single-label and multi-label approaches for a two-class problem for each of the labels and we explore both single-label and multi-target approaches for a four-class problem on two of the three labels, with the third label remaining a two-class problem. In terms of per-label accuracy, the single-label method has the best performance, although some multi-label methods approach the performance of single-label. However, multi-label/multi-target metrics approaches do exceed the performance of the single-label method.
Publications
- Article type
- Year
- Co-author
Year
Open Access
Issue
Big Data Mining and Analytics 2020, 3(1): 1-12
Published: 19 December 2019
Downloads:45
Total 1