Cloud computing (CC) is a novel technology that has made it easier to access network and computer resources on demand such as storage and data management services. In addition, it aims to strengthen systems and make them useful. Regardless of these advantages, cloud providers suffer from many security limits. Particularly, the security of resources and services represents a real challenge for cloud technologies. For this reason, a set of solutions have been implemented to improve cloud security by monitoring resources, services, and networks, then detect attacks. Actually, intrusion detection system (IDS) is an enhanced mechanism used to control traffic within networks and detect abnormal activities. This paper presents a cloud-based intrusion detection model based on random forest (RF) and feature engineering. Specifically, the RF classifier is obtained and integrated to enhance accuracy (ACC) of the proposed detection model. The proposed model approach has been evaluated and validated on two datasets and gives 98.3% ACC and 99.99% ACC using Bot-IoT and NSL-KDD datasets, respectively. Consequently, the obtained results present good performances in terms of ACC, precision, and recall when compared to the recent related works.
- Article type
- Year
- Co-author
Industrial Internet of Things (IIoT) represents the expansion of the Internet of Things (IoT) in industrial sectors. It is designed to implicate embedded technologies in manufacturing fields to enhance their operations. However, IIoT involves some security vulnerabilities that are more damaging than those of IoT. Accordingly, Intrusion Detection Systems (IDSs) have been developed to forestall inevitable harmful intrusions. IDSs survey the environment to identify intrusions in real time. This study designs an intrusion detection model exploiting feature engineering and machine learning for IIoT security. We combine Isolation Forest (IF) with Pearson’s Correlation Coefficient (PCC) to reduce computational cost and prediction time. IF is exploited to detect and remove outliers from datasets. We apply PCC to choose the most appropriate features. PCC and IF are applied exchangeably (PCCIF and IFPCC). The Random Forest (RF) classifier is implemented to enhance IDS performances. For evaluation, we use the Bot-IoT and NF-UNSW-NB15-v2 datasets. RF-PCCIF and RF-IFPCC show noteworthy results with 99.98% and 99.99% Accuracy (ACC) and 6.18 s and 6.25 s prediction time on Bot-IoT, respectively. The two models also score 99.30% and 99.18% ACC and 6.71 s and 6.87 s prediction time on NF-UNSW-NB15-v2, respectively. Results prove that our designed model has several advantages and higher performance than related models.
The modeling of an efficient classifier is a fundamental issue in automatic training involving a large volume of representative data. Hence, automatic classification is a major task that entails the use of training methods capable of assigning classes to data objects by using the input activities presented to learn classes. The recognition of new elements is possible based on predefined classes. Intrusion detection systems suffer from numerous vulnerabilities during analysis and classification of data activities. To overcome this problem, new analysis methods should be derived so as to implement a relevant system to monitor circulated traffic. The main objective of this study is to model and validate a heterogeneous traffic classifier capable of categorizing collected events within networks. The new model is based on a proposed machine learning algorithm that comprises an input layer, a hidden layer, and an output layer. A reliable training algorithm is proposed to optimize the weights, and a recognition algorithm is used to validate the model. Preprocessing is applied to the collected traffic prior to the analysis step. This work aims to describe the mathematical validation of a new machine learning classifier for heterogeneous traffic and anomaly detection.
Internet of Things (IoT) refers to a new extended network that enables to any object to be linked to the Internet in order to exchange data and to be controlled remotely. Nowadays, due to its multiple advantages, the IoT is useful in many areas like environment, water monitoring, industry, public security, medicine, and so on. For covering all spaces and operating correctly, the IoT benefits from advantages of other recent technologies, like radio frequency identification, wireless sensor networks, big data, and mobile network. However, despite of the integration of various things in one network and the exchange of data among heterogeneous sources, the security of user’s data is a central question. For this reason, the authentication of interconnected objects is received as an interested importance. In 2012, Ye et al. suggested a new authentication and key exchanging protocol for Internet of things devices. However, we have proved that their protocol cannot resist to various attacks. In this paper, we propose an enhanced authentication protocol for IoT. Furthermore, we present the comparative results between our proposed scheme and other related ones.